Hypoxia compromises the integrity of the blood-brain barrier (BBB) and increases its permeability, thereby inducing inflammation. Olfactory ensheathing cells (OECs) garnered considerable interest due to their neuroregenerative and anti-inflammatory properties. Here, we aimed to investigate the potential modulatory effects of OEC-conditioned medium (OEC-CM) on the response of human brain microvascular endothelial cells (HBMECs), constituting the BBB, when exposed to hypoxia. HBMECs were utilized to establish the in vitro BBB model. OECs were isolated from mouse olfactory bulbs, and OEC-CM was collected after 48 h of culture. The effect of OEC-CM treatment on the HBMEC viability was evaluated under both normoxic and hypoxic conditions at 6 h, 24 h, and 30 h. Western blot and immunostaining techniques were employed to assess NF-κB/phospho-NF-κB expression. HIF-1α, VEGF-A, and cPLA2 mRNA expression levels were quantified using digital PCR. ELISA assays were performed to measure PGE2, VEGF-A, IL-8 secretion, and cPLA2 specific activity. The in vitro formation of HBMEC capillary-like structures was examined using a three-dimensional matrix system. OEC-CM attenuated pro-inflammatory responses and mitigated the HIF-1α/VEGFA signaling pathway activation in HBMECs under hypoxic condition. Hypoxia-induced damage of the BBB can be mitigated by novel therapeutic strategies harnessing OEC potential.

Hypoxia-Induced Inflammation in In Vitro Model of Human Blood–Brain Barrier: Modulatory Effects of the Olfactory Ensheathing Cell-Conditioned Medium

Agafonova, Aleksandra;Russo, Cristina;Pellitteri, Rosalia;Anfuso, Carmelina Daniela
;
Lupo, Gabriella
2024-01-01

Abstract

Hypoxia compromises the integrity of the blood-brain barrier (BBB) and increases its permeability, thereby inducing inflammation. Olfactory ensheathing cells (OECs) garnered considerable interest due to their neuroregenerative and anti-inflammatory properties. Here, we aimed to investigate the potential modulatory effects of OEC-conditioned medium (OEC-CM) on the response of human brain microvascular endothelial cells (HBMECs), constituting the BBB, when exposed to hypoxia. HBMECs were utilized to establish the in vitro BBB model. OECs were isolated from mouse olfactory bulbs, and OEC-CM was collected after 48 h of culture. The effect of OEC-CM treatment on the HBMEC viability was evaluated under both normoxic and hypoxic conditions at 6 h, 24 h, and 30 h. Western blot and immunostaining techniques were employed to assess NF-κB/phospho-NF-κB expression. HIF-1α, VEGF-A, and cPLA2 mRNA expression levels were quantified using digital PCR. ELISA assays were performed to measure PGE2, VEGF-A, IL-8 secretion, and cPLA2 specific activity. The in vitro formation of HBMEC capillary-like structures was examined using a three-dimensional matrix system. OEC-CM attenuated pro-inflammatory responses and mitigated the HIF-1α/VEGFA signaling pathway activation in HBMECs under hypoxic condition. Hypoxia-induced damage of the BBB can be mitigated by novel therapeutic strategies harnessing OEC potential.
2024
Blood–brain barrier
Human brain microvascular endothelial cells
Hypoxia
Inflammation
Olfactory ensheathing cells
File in questo prodotto:
File Dimensione Formato  
Hypoxia‑Induced Infammation in In Vitro Model of Human.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/640060
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact