The present study investigates the effects of non-uniformity in a bundle's porosity by considering a model channel made up of "dense" (low porosity) and "loose" (high porosity) regions. In a first, simplified, approach these regions are treated as non-interacting porous media and previously obtained computational results are used for the Darcy permeability and the Sherwood number. In a second, and more complete, approach 3-D CFD simulations are conducted for a checkerboard arrangement of alternately "dense" and "loose" regions with square-arrayed fibers, accounting for entry effects and for interactions between regions. Non-uniformity causes a significant increase of the permeability and a strong reduction of the Sherwood number. These effects are larger, approaching those obtained for non-interacting regions, if the regions' length scale is large. The attainment of fully developed conditions is greatly shifted forward in non-uniform bundles and the mass transfer development length may largely exceed the physical length of most hollow-fiber devices.

Hydrodynamics and mass transfer in straight fiber bundles with non-uniform porosity

Gurreri, L.
;
2023-01-01

Abstract

The present study investigates the effects of non-uniformity in a bundle's porosity by considering a model channel made up of "dense" (low porosity) and "loose" (high porosity) regions. In a first, simplified, approach these regions are treated as non-interacting porous media and previously obtained computational results are used for the Darcy permeability and the Sherwood number. In a second, and more complete, approach 3-D CFD simulations are conducted for a checkerboard arrangement of alternately "dense" and "loose" regions with square-arrayed fibers, accounting for entry effects and for interactions between regions. Non-uniformity causes a significant increase of the permeability and a strong reduction of the Sherwood number. These effects are larger, approaching those obtained for non-interacting regions, if the regions' length scale is large. The attainment of fully developed conditions is greatly shifted forward in non-uniform bundles and the mass transfer development length may largely exceed the physical length of most hollow-fiber devices.
2023
Hollow fiber
Non -uniform porosity
Darcy permeability
Sherwood number
CFD
Entry effects
File in questo prodotto:
File Dimensione Formato  
Hydrodynamics and mass transfer in straight fiber bundles with non-uniform porosity.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 8.28 MB
Formato Adobe PDF
8.28 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/640210
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact