Paroxysmal explosive activity at Etna volcano (Italy) has become quite frequent over the last three decades, raising concerns with the civil protection authorities due to its significant impact on the local population, infrastructures, viability and air traffic. Between 4 July and 15 August 2024, during the tourist season peak when the local population doubles, Etna volcano gave rise to a sequence of six paroxysmal explosive events from the summit crater named Voragine. This is the oldest and largest of Etna’s four summit craters and normally only produces degassing, with the previous explosive sequences occurring in December 2015 and May 2016. In this paper, we use thermal images recorded by the monitoring system maintained by the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo (INGV–OE), and an automatic procedure previously tested in order to automatically define the eruptive parameters of the six lava fountain episodes. These data allowed us to infer the eruptive processes and gain some insights on the evolution of the explosive sequences that are useful for hazard assessment. Specifically, our results lead to the hypothesis that the Voragine shallow storage has a capacity of ~12–15 Mm3, which was not completely emptied with the last two paroxysmal events. It is thus possible that one or two additional explosive paroxysmal events could occur in the future. It is noteworthy that an additional paroxysmal episode occurred at Voragine on 10 November 2024, after the submission of this paper, thus confirming our hypothesis.

Reawakening of Voragine, the Oldest of Etna’s Summit Craters: Insights from a Recurrent Episodic Eruptive Behavior

Nunnari, Giuseppe
2024-01-01

Abstract

Paroxysmal explosive activity at Etna volcano (Italy) has become quite frequent over the last three decades, raising concerns with the civil protection authorities due to its significant impact on the local population, infrastructures, viability and air traffic. Between 4 July and 15 August 2024, during the tourist season peak when the local population doubles, Etna volcano gave rise to a sequence of six paroxysmal explosive events from the summit crater named Voragine. This is the oldest and largest of Etna’s four summit craters and normally only produces degassing, with the previous explosive sequences occurring in December 2015 and May 2016. In this paper, we use thermal images recorded by the monitoring system maintained by the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo (INGV–OE), and an automatic procedure previously tested in order to automatically define the eruptive parameters of the six lava fountain episodes. These data allowed us to infer the eruptive processes and gain some insights on the evolution of the explosive sequences that are useful for hazard assessment. Specifically, our results lead to the hypothesis that the Voragine shallow storage has a capacity of ~12–15 Mm3, which was not completely emptied with the last two paroxysmal events. It is thus possible that one or two additional explosive paroxysmal events could occur in the future. It is noteworthy that an additional paroxysmal episode occurred at Voragine on 10 November 2024, after the submission of this paper, thus confirming our hypothesis.
2024
Etna volcano; paroxysmal explosions; lava fountaining; erupted volume; pyroclastics; Voragine crater; episodic explosive eruptive sequence
File in questo prodotto:
File Dimensione Formato  
remotesensing-16-04278.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.95 MB
Formato Adobe PDF
3.95 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/643129
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact