A careful design of the nanocrystal architecture can strongly enhance the nanocrystal function. So far, this strategy has faced a synthetic bottleneck in the case of refractory oxides. Here we demonstrate the epitaxial growth of hafnia shells onto zirconia cores and pure zirconia shells onto europium-doped zirconia cores. The core/shell structures are fully crystalline. Upon shelling, the optical properties of the europium dopant are dramatically improved (featuring a more uniform coordination and a longer photoluminescence lifetime), indicating the suppression of nonradiative pathways. These results launch the stable zirconium and hafnium oxide hosts as alternatives for the established NaYF4 systems.

Epitaxial Core/Shell Nanocrystals of (Europium-Doped) Zirconia and Hafnia

Spadaro M. C.;
2024-01-01

Abstract

A careful design of the nanocrystal architecture can strongly enhance the nanocrystal function. So far, this strategy has faced a synthetic bottleneck in the case of refractory oxides. Here we demonstrate the epitaxial growth of hafnia shells onto zirconia cores and pure zirconia shells onto europium-doped zirconia cores. The core/shell structures are fully crystalline. Upon shelling, the optical properties of the europium dopant are dramatically improved (featuring a more uniform coordination and a longer photoluminescence lifetime), indicating the suppression of nonradiative pathways. These results launch the stable zirconium and hafnium oxide hosts as alternatives for the established NaYF4 systems.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/643352
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact