The shuttle effect and sluggish conversion kinetics of lithium polysulfides (LiPS) hamper the practical application of lithium–sulfur batteries (LSBs). Toward overcoming these limitations, herein an in situ grown C2N@NbSe2 heterostructure is presented with remarkable specific surface area, as a Li–S catalyst and LiPS absorber. Density functional theory (DFT) calculations and experimental results comprehensively demonstrate that C2N@NbSe2 is characterized by a suitable electronic structure and charge rearrangement that strongly accelerates the LiPS electrocatalytic conversion. In addition, heterostructured C2N@NbSe2 strongly interacts with LiPS species, confining them at the cathode. As a result, LSBs cathodes based on C2N@NbSe2/S exhibit a high initial capacity of 1545 mAh g−1 at 0.1 C. Even more excitingly, C2N@NbSe2/S cathodes are characterized by impressive cycling stability with only 0.012% capacity decay per cycle after 2000 cycles at 3 C. Even at a sulfur loading of 5.6 mg cm−2, a high areal capacity of 5.65 mAh cm−2 is delivered. These results demonstrate that C2N@NbSe2 heterostructures can act as multifunctional polysulfide mediators to chemically adsorb LiPS, accelerate Li-ion diffusion, chemically catalyze LiPS conversion, and lower the energy barrier for Li2S precipitation/decomposition, realizing the “adsorption-diffusion-conversion” of polysulfides.

NbSe2 Meets C2N: A 2D-2D Heterostructure Catalysts as Multifunctional Polysulfide Mediator in Ultra-Long-Life Lithium–Sulfur Batteries

Spadaro M. C.;
2021-01-01

Abstract

The shuttle effect and sluggish conversion kinetics of lithium polysulfides (LiPS) hamper the practical application of lithium–sulfur batteries (LSBs). Toward overcoming these limitations, herein an in situ grown C2N@NbSe2 heterostructure is presented with remarkable specific surface area, as a Li–S catalyst and LiPS absorber. Density functional theory (DFT) calculations and experimental results comprehensively demonstrate that C2N@NbSe2 is characterized by a suitable electronic structure and charge rearrangement that strongly accelerates the LiPS electrocatalytic conversion. In addition, heterostructured C2N@NbSe2 strongly interacts with LiPS species, confining them at the cathode. As a result, LSBs cathodes based on C2N@NbSe2/S exhibit a high initial capacity of 1545 mAh g−1 at 0.1 C. Even more excitingly, C2N@NbSe2/S cathodes are characterized by impressive cycling stability with only 0.012% capacity decay per cycle after 2000 cycles at 3 C. Even at a sulfur loading of 5.6 mg cm−2, a high areal capacity of 5.65 mAh cm−2 is delivered. These results demonstrate that C2N@NbSe2 heterostructures can act as multifunctional polysulfide mediators to chemically adsorb LiPS, accelerate Li-ion diffusion, chemically catalyze LiPS conversion, and lower the energy barrier for Li2S precipitation/decomposition, realizing the “adsorption-diffusion-conversion” of polysulfides.
2021
C
2
N
heterostructures
lithium polysulfides
lithium-sulfur batteries
niobium selenides
File in questo prodotto:
File Dimensione Formato  
Advanced Energy Materials - 2021 - Yang - NbSe2 Meets C2N A 2D‐2D Heterostructure Catalysts as Multifunctional Polysulfide (1).pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.15 MB
Formato Adobe PDF
3.15 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/643355
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 116
  • ???jsp.display-item.citation.isi??? 116
social impact