The present review discusses the transformative role of AI in the diagnosis and management of head and neck cancers (HNCs). Methods: It explores how AI technologies, including ML, DL, and CNNs, are applied in various diagnostic tasks, such as medical imaging, molecular profiling, and predictive modeling. Results: This review highlights AI's ability to improve diagnostic accuracy and efficiency, particularly in analyzing medical images like CT, MRI, and PET scans, where AI sometimes outperforms human radiologists. This paper also emphasizes AI's application in histopathology, where algorithms assist in whole-slide image (WSI) analysis, tumor-infiltrating lymphocytes (TILs) quantification, and tumor segmentation. AI shows promise in identifying subtle or rare histopathological patterns and enhancing the precision of tumor grading and treatment planning. Furthermore, the integration of AI with molecular and genomic data aids in mutation analysis, prognosis, and personalized treatment strategies. Conclusions: Despite these advancements, the review identifies challenges in AI adoption, such as data standardization and model interpretability, and calls for further research to fully integrate AI into clinical practice for improved patient outcomes.

Artificial Intelligence in Head and Neck Cancer Diagnosis: A Comprehensive Review with Emphasis on Radiomics, Histopathological, and Molecular Applications

Giuseppe Broggi;Antonino Maniaci;Serena Salzano;Manuel Mazzucchelli;Rosario Caltabiano
2024-01-01

Abstract

The present review discusses the transformative role of AI in the diagnosis and management of head and neck cancers (HNCs). Methods: It explores how AI technologies, including ML, DL, and CNNs, are applied in various diagnostic tasks, such as medical imaging, molecular profiling, and predictive modeling. Results: This review highlights AI's ability to improve diagnostic accuracy and efficiency, particularly in analyzing medical images like CT, MRI, and PET scans, where AI sometimes outperforms human radiologists. This paper also emphasizes AI's application in histopathology, where algorithms assist in whole-slide image (WSI) analysis, tumor-infiltrating lymphocytes (TILs) quantification, and tumor segmentation. AI shows promise in identifying subtle or rare histopathological patterns and enhancing the precision of tumor grading and treatment planning. Furthermore, the integration of AI with molecular and genomic data aids in mutation analysis, prognosis, and personalized treatment strategies. Conclusions: Despite these advancements, the review identifies challenges in AI adoption, such as data standardization and model interpretability, and calls for further research to fully integrate AI into clinical practice for improved patient outcomes.
2024
artificial intelligence
deep learning
diagnosis
head and neck cancer
machine learning
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/644549
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact