A polyvinylimidazole-based cryogel is presented as a pioneering solution for efficient extraction and release of partially water-soluble polyphenols from olive byproducts. Specifically, oleuropein was used as model molecule to evaluate its recovery from water. The material merges the properties of interconnected cryogel structure in adsorbing molecules via fast diffusion flux, with the strong electrostatic interactions acted by imidazole moiety. Such cryogel achieves effective oleuropein binding likely through hydrogen bonding and π–π interactions. Comprehensive assessments of static adsorption kinetics, isotherms, and desorption kinetics underscore the cryogel’s efficacy in oleuropein extraction and release, highlighting its pivotal role in valorizing olive wastewater through sustainable biotechnological applications.
Polyvinylimidazole-Based Cryogel as an Efficient Tool for the Capture and Release of Oleuropein in Aqueous Media
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Valentina Giglio
;Chiara Zagni;Francesca Cunsolo;Sabrina Carola Carroccio
	
		
		
	
			2024-01-01
Abstract
A polyvinylimidazole-based cryogel is presented as a pioneering solution for efficient extraction and release of partially water-soluble polyphenols from olive byproducts. Specifically, oleuropein was used as model molecule to evaluate its recovery from water. The material merges the properties of interconnected cryogel structure in adsorbing molecules via fast diffusion flux, with the strong electrostatic interactions acted by imidazole moiety. Such cryogel achieves effective oleuropein binding likely through hydrogen bonding and π–π interactions. Comprehensive assessments of static adsorption kinetics, isotherms, and desorption kinetics underscore the cryogel’s efficacy in oleuropein extraction and release, highlighting its pivotal role in valorizing olive wastewater through sustainable biotechnological applications.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


