Adjuvants alter the physical–chemical properties of pesticide formulations, influencing either the droplet size or drift phenomenon. Selecting the appropriate adjuvant and understanding its characteristics can contribute to the efficiency of Plant Protection Product (PPP) application. This reduces drift losses and promotes better deposition on the crop. The objective of this study was to evaluate the effects of four commercial adjuvants based on mineral oil (Agefix and Assist), vegetable oil (Aureo), and polymer (BREAK-THRU) on the physical–chemical properties (surface tension, contact angle, volumetric mass, electrical conductivity, and pH), droplet size, and drift, using pure water as the control treatment (no adjuvant). Surface tension and contact angle were measured with a DSA30 droplet shape analyzer, while droplet size measurements were determined through a laser diffraction particle analyzer (Malvern Spraytec), using a single flat fan spray nozzle (AXI 110 03) operating at 0.3 MPa. Drift reduction potential was evaluated inside a wind tunnel with an air speed of 2 m s−1. All adjuvants reduced surface tension and contact angle compared to water. volumetric median diameter (VMD) increased for Aureo, Assist, and Agefix, generating coarse, medium, and medium droplets, respectively, while BREAK-THRU formed fine droplets, similar to those generated by water. Aureo had the greatest reduction in Relative Span Factor ( (Formula presented.) ), with a reduction of 30.3%. Overall, Aureo, Assist, and Agefix adjuvants significantly reduced the percentage of droplets <100 µm and increased those >500 µm. Drift reduction potential was achieved for all adjuvants, with Aureo showing the highest reduction of 59.35%. The study confirms that selecting the appropriate adjuvant can improve PPP application and promote environmental sustainability in agricultural practices

Effect of Adjuvants on Physical–Chemical Properties, Droplet Size, and Drift Reduction Potential

Salvatore Privitera
;
Luciano Caruso;Emanuele Cerruto
Penultimo
;
Giuseppe Manetto
Ultimo
2024-01-01

Abstract

Adjuvants alter the physical–chemical properties of pesticide formulations, influencing either the droplet size or drift phenomenon. Selecting the appropriate adjuvant and understanding its characteristics can contribute to the efficiency of Plant Protection Product (PPP) application. This reduces drift losses and promotes better deposition on the crop. The objective of this study was to evaluate the effects of four commercial adjuvants based on mineral oil (Agefix and Assist), vegetable oil (Aureo), and polymer (BREAK-THRU) on the physical–chemical properties (surface tension, contact angle, volumetric mass, electrical conductivity, and pH), droplet size, and drift, using pure water as the control treatment (no adjuvant). Surface tension and contact angle were measured with a DSA30 droplet shape analyzer, while droplet size measurements were determined through a laser diffraction particle analyzer (Malvern Spraytec), using a single flat fan spray nozzle (AXI 110 03) operating at 0.3 MPa. Drift reduction potential was evaluated inside a wind tunnel with an air speed of 2 m s−1. All adjuvants reduced surface tension and contact angle compared to water. volumetric median diameter (VMD) increased for Aureo, Assist, and Agefix, generating coarse, medium, and medium droplets, respectively, while BREAK-THRU formed fine droplets, similar to those generated by water. Aureo had the greatest reduction in Relative Span Factor ( (Formula presented.) ), with a reduction of 30.3%. Overall, Aureo, Assist, and Agefix adjuvants significantly reduced the percentage of droplets <100 µm and increased those >500 µm. Drift reduction potential was achieved for all adjuvants, with Aureo showing the highest reduction of 59.35%. The study confirms that selecting the appropriate adjuvant can improve PPP application and promote environmental sustainability in agricultural practices
2024
surface tension, contact angle, drop spectrum, spray drift, adjuvant,
File in questo prodotto:
File Dimensione Formato  
2024 - Effect of adjuvants.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.07 MB
Formato Adobe PDF
4.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/649353
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact