Complex networks have become the main paradigm for modelling the dynamics of interacting systems. However, networks are intrinsically limited to describing pairwise interactions, whereas real-world systems are often characterized by higher-order interactions involving groups of three or more units. Higher-order structures, such as hypergraphs and simplicial complexes, are therefore a better tool to map the real organization of many social, biological and man-made systems. Here, we highlight recent evidence of collective behaviours induced by higher-order interactions, and we outline three key challenges for the physics of higher-order systems.

The physics of higher-order interactions in complex systems

Latora V.;
2021-01-01

Abstract

Complex networks have become the main paradigm for modelling the dynamics of interacting systems. However, networks are intrinsically limited to describing pairwise interactions, whereas real-world systems are often characterized by higher-order interactions involving groups of three or more units. Higher-order structures, such as hypergraphs and simplicial complexes, are therefore a better tool to map the real organization of many social, biological and man-made systems. Here, we highlight recent evidence of collective behaviours induced by higher-order interactions, and we outline three key challenges for the physics of higher-order systems.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/649610
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 496
  • ???jsp.display-item.citation.isi??? ND
social impact