A growing body of research highlights the positive impact of regular physical activity on improving physical and mental health. On the other hand, physical inactivity is one of the leading risk factors for noncommunicable diseases and death worldwide. Exercise profoundly impacts various body districts, including the central nervous system. Here, overwhelming evidence exists that physical exercise affects neurons and glial cells, by promoting their interaction. Physical exercise directly acts on ependymal cells by promoting their proliferation and activation, maintaing brain homeostasis in healthy animals and promote locomotor recovery after spinal cord injury. This review aims to describe the main anatomical characteristics and functions of ependymal cells and provide an overview of the effects of different types of physical exercise on glial cells, focusing on the ependymal cells.

Addressing the Effect of Exercise on Glial Cells: Focus on Ependymal Cells

Grazia Maugeri
Primo
;
Alessandra Amato
Secondo
;
Giuseppe Evola;Velia D’Agata
Penultimo
;
Giuseppe Musumeci
Ultimo
2024-01-01

Abstract

A growing body of research highlights the positive impact of regular physical activity on improving physical and mental health. On the other hand, physical inactivity is one of the leading risk factors for noncommunicable diseases and death worldwide. Exercise profoundly impacts various body districts, including the central nervous system. Here, overwhelming evidence exists that physical exercise affects neurons and glial cells, by promoting their interaction. Physical exercise directly acts on ependymal cells by promoting their proliferation and activation, maintaing brain homeostasis in healthy animals and promote locomotor recovery after spinal cord injury. This review aims to describe the main anatomical characteristics and functions of ependymal cells and provide an overview of the effects of different types of physical exercise on glial cells, focusing on the ependymal cells.
2024
exercise ;physical activity; glial cells; ependymal cells; neuroanatomy
File in questo prodotto:
File Dimensione Formato  
1757-448X-23-12-216.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.91 MB
Formato Adobe PDF
1.91 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/652216
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact