Thermoluminescent dosimeters (TLD) and optically stimulated luminescent dosimeters (OSLD) are practical, accurate, and precise tools for point dosimetry in medical physics applications. The objective of this study is to investigate the luminescence properties—both OSL and TL—of lithium fluoride (LiF) doped with magnesium (Mg), copper (Cu), and phosphorous (P) (LiF: Mg, Cu, P), commercially known as TLD-100H. The goal is to devise a methodological approach for dose measurement that allows for obtaining two independently measured dose values at each irradiation point, thereby improving accuracy and precision. The luminescence properties of TLD-100H were studied using a beta irradiation source (90Sr/90Y) integrated into the TL/OSL DA-15 automated Risø reader. This study identified the ideal experimental conditions for optimal dose evaluation and used them for dosimeter calibration across doses ranging from 0.5 to 4.0 Gy. The results demonstrated that, under optimal measurement parameters, the OSL and residual thermoluminescence (ResTL) signals—correlated to two trap systems within the dosimeter—exhibited high reproducibility, stability over multiple cycles, and high precision and accuracy (≤2%). Specifically, the OSL response showed good linear behavior across the investigated dose range, while the ResTL signal exhibited linear behavior between 0.5 and 2 Gy and sublinear behavior for doses >2 Gy.

Simultaneous Double Dose Measurements Using TLD-100H

Stella G.
;
Sallah A.;Galvagno R.;D'Anna A.;Gueli A. M.
2024-01-01

Abstract

Thermoluminescent dosimeters (TLD) and optically stimulated luminescent dosimeters (OSLD) are practical, accurate, and precise tools for point dosimetry in medical physics applications. The objective of this study is to investigate the luminescence properties—both OSL and TL—of lithium fluoride (LiF) doped with magnesium (Mg), copper (Cu), and phosphorous (P) (LiF: Mg, Cu, P), commercially known as TLD-100H. The goal is to devise a methodological approach for dose measurement that allows for obtaining two independently measured dose values at each irradiation point, thereby improving accuracy and precision. The luminescence properties of TLD-100H were studied using a beta irradiation source (90Sr/90Y) integrated into the TL/OSL DA-15 automated Risø reader. This study identified the ideal experimental conditions for optimal dose evaluation and used them for dosimeter calibration across doses ranging from 0.5 to 4.0 Gy. The results demonstrated that, under optimal measurement parameters, the OSL and residual thermoluminescence (ResTL) signals—correlated to two trap systems within the dosimeter—exhibited high reproducibility, stability over multiple cycles, and high precision and accuracy (≤2%). Specifically, the OSL response showed good linear behavior across the investigated dose range, while the ResTL signal exhibited linear behavior between 0.5 and 2 Gy and sublinear behavior for doses >2 Gy.
2024
dose measurements
glow-curve deconvolution
OSLD
residual TL
TLD
File in questo prodotto:
File Dimensione Formato  
crystals-14-00603.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.44 MB
Formato Adobe PDF
2.44 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/652469
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact