The structural health monitoring of cultural heritages is addressed in this paper. The arising inverse problem is solved through the Learning-by-Examples (LBE) paradigm, exploiting data collected by a Wireless Sensor Network (WSN). More in detail, low-cost and low-size sensing devices are spread over the scenario to be monitored, allowing environmental data as well as acceleration and vibration information to be acquired and processed by means of a Support Vector Machine (SVM) in order to detect the presence/absence of a damage in the monitored structure. The proposed approach has been preliminary validated in a laboratory-controlled environment, demonstrating promising performance.

Computational methods for wireless structural health monitoring of cultural heritages

Hannan M. A.;
2018-01-01

Abstract

The structural health monitoring of cultural heritages is addressed in this paper. The arising inverse problem is solved through the Learning-by-Examples (LBE) paradigm, exploiting data collected by a Wireless Sensor Network (WSN). More in detail, low-cost and low-size sensing devices are spread over the scenario to be monitored, allowing environmental data as well as acceleration and vibration information to be acquired and processed by means of a Support Vector Machine (SVM) in order to detect the presence/absence of a damage in the monitored structure. The proposed approach has been preliminary validated in a laboratory-controlled environment, demonstrating promising performance.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/652684
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact