In this work we propose an uncertainty-aware controller for the Fly-crane system, a statically rigid cable-suspended aerial manipulator using the minimum number of aerial robots and cables. The force closure property of the Fly-crane makes it ideal for applications where high precision is required and external disturbances should be compensated. The proposed control requires the knowledge of the nominal values of a minimum number of uncertain kinematic parameters, thus simplifying the identification process and the controller implementation. We propose an optimization-based tuning method of the control gains that ensures stability despite parameter uncertainty and maximizes the H∞ performance. The validity of the proposed framework is shown through real experiments.

Full-Pose Manipulation Control of a Cable-Suspended Load With Multiple UAVs Under Uncertainties

Sanalitro, Dario;
2020-01-01

Abstract

In this work we propose an uncertainty-aware controller for the Fly-crane system, a statically rigid cable-suspended aerial manipulator using the minimum number of aerial robots and cables. The force closure property of the Fly-crane makes it ideal for applications where high precision is required and external disturbances should be compensated. The proposed control requires the knowledge of the nominal values of a minimum number of uncertain kinematic parameters, thus simplifying the identification process and the controller implementation. We propose an optimization-based tuning method of the control gains that ensures stability despite parameter uncertainty and maximizes the H∞ performance. The validity of the proposed framework is shown through real experiments.
2020
aerial robotic manipulation
motion control
multi-robot systems
Unmanned aerial vehicles
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/654329
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 54
social impact