The cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae), is an invasive polyphagous pest that has been reported in several tomato-producing Mediterranean countries. However, information regarding the impact of temperature variations on its potential damage and population dynamics on this crop is limited. The effect of four temperatures (20 ± 1 °C, 25 ± 1 °C, 30 ± 1 °C and 35 ± 1 °C) on the development, reproduction, and population growth parameters of P. solenopsis on tomatoes under controlled laboratory conditions was investigated using age-stage two-sex life tables. The increase in temperature caused a significant decrease in the developmental periods of all instars except eggs. The shortest durations of the life cycle (29.58 ± 0.28 days for females and 13.91 ± 0.25 days for males), the adult preoviposition period (APOP), and the total preoviposition period (TPOP) (APOP: 7.78 ± 0.09 days and TPOP: 18.33 ± 0.13 days) were obtained at 35 ± 1 °C. Fecundity varied with temperature, and the highest value was recorded at 30 ± 1 °C (183.29 ± 7.13 eggs/female). The highest average net reproduction rate (R0) (154.24 ± 14.681 offspring/female), intrinsic rate of increase (r) (0.222 ± 0.0036 d−1), and finite rate of increase (λ) (1.248 ± 0.00495 d−1) were observed at 35 ± 1 °C. A simulation of population increase and structure under different temperatures over a period of 90 days revealed that the greatest expected population size was at 35 ± 1 °C, with the completion of four overlapping generations. The data from this study provide valuable information for adapted pest management approaches against P. solenopsis on tomato crops.
Life History Parameters of the Invasive Cotton Mealybug Phenacoccus solenopsis on Tomato at Four Constant Temperatures
Pompeo SUMAUltimo
2025-01-01
Abstract
The cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae), is an invasive polyphagous pest that has been reported in several tomato-producing Mediterranean countries. However, information regarding the impact of temperature variations on its potential damage and population dynamics on this crop is limited. The effect of four temperatures (20 ± 1 °C, 25 ± 1 °C, 30 ± 1 °C and 35 ± 1 °C) on the development, reproduction, and population growth parameters of P. solenopsis on tomatoes under controlled laboratory conditions was investigated using age-stage two-sex life tables. The increase in temperature caused a significant decrease in the developmental periods of all instars except eggs. The shortest durations of the life cycle (29.58 ± 0.28 days for females and 13.91 ± 0.25 days for males), the adult preoviposition period (APOP), and the total preoviposition period (TPOP) (APOP: 7.78 ± 0.09 days and TPOP: 18.33 ± 0.13 days) were obtained at 35 ± 1 °C. Fecundity varied with temperature, and the highest value was recorded at 30 ± 1 °C (183.29 ± 7.13 eggs/female). The highest average net reproduction rate (R0) (154.24 ± 14.681 offspring/female), intrinsic rate of increase (r) (0.222 ± 0.0036 d−1), and finite rate of increase (λ) (1.248 ± 0.00495 d−1) were observed at 35 ± 1 °C. A simulation of population increase and structure under different temperatures over a period of 90 days revealed that the greatest expected population size was at 35 ± 1 °C, with the completion of four overlapping generations. The data from this study provide valuable information for adapted pest management approaches against P. solenopsis on tomato crops.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.