The discriminative detection of volatile primary aliphatic diamines (VPADs) is a relevant and timely issue. This paper explores the distinctive optical features of H-type and J-type aggregates on paper-based (PB) films, namely H-PB and J-PB films, respectively, of a Lewis acidic Zn(salen)-type complex upon chemisorption of vapors of ditopic VPADs versus those of monotopic volatile amines. While volatile monotopic Lewis bases upon chemisorption give rise to mono-adducts accompanied by enhancement of the fluorescence, in contrast, VPADs act as ditopic bases forming di-adducts with distinct optical properties, leading to fluorescence quenching. This behavior enables the sensitive and discriminative detection of VPAD vapors from those of volatile monoamines. For example, for ethylenediamine (EDA), using J-PB films, sensitive detection is achieved with a LOD down to 6.6 ppm, lower than the OSHA permissible exposure limit of 10 ppm for EDA, and a linear dynamic range up to 100 ppm. Instead, H-PB films enable the detection of EDA vapors at higher ppm concentrations (up to 3000 ppm) with a linearity of up to 1000 ppm. Thus, the combination of both H-PB and J-PB films of the Zn(salen)-type complex represents a unique example of the sensitive and discriminative detection of EDA vapors in such a wide concentration range.
Sensitive and Discriminative Fluorescent Detection of Volatile Primary Aliphatic Diamine Vapors from Monoamines
Agostino Attina;Ivan Pietro Oliveri;Massimiliano Gaeta;Santo Di Bella
2024-01-01
Abstract
The discriminative detection of volatile primary aliphatic diamines (VPADs) is a relevant and timely issue. This paper explores the distinctive optical features of H-type and J-type aggregates on paper-based (PB) films, namely H-PB and J-PB films, respectively, of a Lewis acidic Zn(salen)-type complex upon chemisorption of vapors of ditopic VPADs versus those of monotopic volatile amines. While volatile monotopic Lewis bases upon chemisorption give rise to mono-adducts accompanied by enhancement of the fluorescence, in contrast, VPADs act as ditopic bases forming di-adducts with distinct optical properties, leading to fluorescence quenching. This behavior enables the sensitive and discriminative detection of VPAD vapors from those of volatile monoamines. For example, for ethylenediamine (EDA), using J-PB films, sensitive detection is achieved with a LOD down to 6.6 ppm, lower than the OSHA permissible exposure limit of 10 ppm for EDA, and a linear dynamic range up to 100 ppm. Instead, H-PB films enable the detection of EDA vapors at higher ppm concentrations (up to 3000 ppm) with a linearity of up to 1000 ppm. Thus, the combination of both H-PB and J-PB films of the Zn(salen)-type complex represents a unique example of the sensitive and discriminative detection of EDA vapors in such a wide concentration range.File | Dimensione | Formato | |
---|---|---|---|
molecules-29-05947.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
3.35 MB
Formato
Adobe PDF
|
3.35 MB | Adobe PDF | Visualizza/Apri |
molecules-3356999-supplementary.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
739.9 kB
Formato
Adobe PDF
|
739.9 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.