We study the existence of W-0(1,1) (Omega) -solutions of nonlinear anisotropic problems whose simplest model is { -div (a(x) |del u|(p -2)del u) -div(|u|((r -1)q+1)|del u|(q -2)del u) = f in Omega, {u = 0 on partial derivative Omega. where Omega is abounded open subset of R-N(N > 2), 1 < q <= p < N , r > q -1/q and f is a function with poor summability.

W1,1 0 (Ω)−SOLUTIONS FOR A DEGENERATE DOUBLE PHASE TYPE OPERATOR IN SOME BORDERLINE CASES

D'Asero S.
2024-01-01

Abstract

We study the existence of W-0(1,1) (Omega) -solutions of nonlinear anisotropic problems whose simplest model is { -div (a(x) |del u|(p -2)del u) -div(|u|((r -1)q+1)|del u|(q -2)del u) = f in Omega, {u = 0 on partial derivative Omega. where Omega is abounded open subset of R-N(N > 2), 1 < q <= p < N , r > q -1/q and f is a function with poor summability.
2024
nonlinear elliptic equations
W-0(1,1)(ohm)-solutions
double phase problems
L-m(ohm)-data
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/662470
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact