The reduction method for studying optimal nonlinear stability of constant solutions to some ecological models with diffusion, which include the Cantrell–Cosner and the May–Leonard systems, is given. A new canonical energy (Lyapunov function) is introduced, and it is proved that the regions of linear and nonlinear stability coincide with a known radius of attraction for the initial data. Attention is focused on a May–Leonard system with circular symmetry, an asymmetric May–Leonard system with diffusion, and a system for aggregation of glia in the brain.

Nonlinear stability for diffusion models in biology

MULONE, Giuseppe;
2009

Abstract

The reduction method for studying optimal nonlinear stability of constant solutions to some ecological models with diffusion, which include the Cantrell–Cosner and the May–Leonard systems, is given. A new canonical energy (Lyapunov function) is introduced, and it is proved that the regions of linear and nonlinear stability coincide with a known radius of attraction for the initial data. Attention is focused on a May–Leonard system with circular symmetry, an asymmetric May–Leonard system with diffusion, and a system for aggregation of glia in the brain.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11769/6634
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 12
social impact