The hybrid FEM-DBCI numerical method is proposed for the computation of coupling factors between time-harmonic magnetic fields and human bodies. Characteristics are highlighted which make FEM-DBCI very suitable to perform such computations. Several coil geometries are considered (circular coils) at low frequency. A simplified model of the human body is assumed as suggested by IEC standards. Details of the method are highlighted, and numerical results are also provided.

Applying Finite Element Method–Dirichlet Boundary Condition Iteration to the Computation of Coupling Factors for a 3-D Human Model

Giovanni Aiello;Salvatore Alfonzetti;Santi Agatino Rizzo;Nunzio Salerno
2025-01-01

Abstract

The hybrid FEM-DBCI numerical method is proposed for the computation of coupling factors between time-harmonic magnetic fields and human bodies. Characteristics are highlighted which make FEM-DBCI very suitable to perform such computations. Several coil geometries are considered (circular coils) at low frequency. A simplified model of the human body is assumed as suggested by IEC standards. Details of the method are highlighted, and numerical results are also provided.
2025
coupling factor
eddy currents
finite element method
hybrid methods
integral equations
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/663469
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact