Despite recent advancements in radiotherapy for Diffuse Intrinsic Pontine Glioma (DIPG), the prognosis of this disease remains poor, highlighting the need for new treatment strategies to improve outcomes. Adding stereotactic biopsy to the diagnostic process for children with DIPG has been crucial in improving the management of this disease. Indeed, the discovery of the H3K27M mutation as a key driver of DIPG has led to the development of new drugs that are more effective than traditional ones. These include nimotuzumab (an anti-EGFR drug) and vinorelbine (a semisynthetic vinca alkaloid) in combination, Panobinostat (a histone deacetylase inhibitor), ONC201 (a drug that blocks the dopamine receptor D2 and inactivates Akt and ERK kinases), and chimeric antigen receptor (CAR) T cells. In terms of local therapy, identifying the H3K27M mutation can help us explore how genetic changes affect treatment response, recurrence patterns, and survival. Beyond the time to first recurrence, specific patterns of tumor recurrence, like leptomeningeal spread, can influence treatment plans. For example, radiotherapy can be adjusted in terms of doses and volumes, based on tumor aggressiveness. Because the H3K27M mutation is linked to higher malignancy, a slightly higher dose could be used for the second round of local irradiation. Additionally, irradiating the entire craniospinal axis could help control both local and leptomeningeal disease.
Latest Advancements in the Management of H3K27M-Mutant Diffuse Intrinsic Pontine Glioma: A Narrative Review
Grazia Acquaviva;Antonio Basile;Pietro Valerio Foti;Stefano Palmucci;Emanuele David;Corrado SPATOLA
2025-01-01
Abstract
Despite recent advancements in radiotherapy for Diffuse Intrinsic Pontine Glioma (DIPG), the prognosis of this disease remains poor, highlighting the need for new treatment strategies to improve outcomes. Adding stereotactic biopsy to the diagnostic process for children with DIPG has been crucial in improving the management of this disease. Indeed, the discovery of the H3K27M mutation as a key driver of DIPG has led to the development of new drugs that are more effective than traditional ones. These include nimotuzumab (an anti-EGFR drug) and vinorelbine (a semisynthetic vinca alkaloid) in combination, Panobinostat (a histone deacetylase inhibitor), ONC201 (a drug that blocks the dopamine receptor D2 and inactivates Akt and ERK kinases), and chimeric antigen receptor (CAR) T cells. In terms of local therapy, identifying the H3K27M mutation can help us explore how genetic changes affect treatment response, recurrence patterns, and survival. Beyond the time to first recurrence, specific patterns of tumor recurrence, like leptomeningeal spread, can influence treatment plans. For example, radiotherapy can be adjusted in terms of doses and volumes, based on tumor aggressiveness. Because the H3K27M mutation is linked to higher malignancy, a slightly higher dose could be used for the second round of local irradiation. Additionally, irradiating the entire craniospinal axis could help control both local and leptomeningeal disease.File | Dimensione | Formato | |
---|---|---|---|
Lo Greco H3K27M 2025.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
505.49 kB
Formato
Adobe PDF
|
505.49 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.