The integration of organic electronic materials with biological systems to monitor, interface with, and regulate physiological processes is a key area in the field of bioelectronics. Central to this advancement is the development of cell-chip coupling, where materials engineering plays a critical role in enhancing biointerfacing capabilities. Conductive polymers have proven particularly useful in cell interfacing applications due to their favorable biophysical and chemical properties. However, n-type conductive polymers remain underexplored, primarily due to their limited long-term stability. In this study, it is demonstrated that the conductive polymer poly(benzimidazobenzophenanthroline) (BBL), commonly used in organic electronic devices, can effectively support neuronal cell viability and spreading, both as a bare cell culture material and when coated with exracellular matrix proteins. This work provides a preliminary validation of BBL's potential for future integration into bioelectronic devices and in biointerfacing.
Evaluation of the Biocompatibility of Poly(benzimidazobenzophenanthroline)(BBL) Polymer Films with Living Cells
Messina G. M. L.;
2025-01-01
Abstract
The integration of organic electronic materials with biological systems to monitor, interface with, and regulate physiological processes is a key area in the field of bioelectronics. Central to this advancement is the development of cell-chip coupling, where materials engineering plays a critical role in enhancing biointerfacing capabilities. Conductive polymers have proven particularly useful in cell interfacing applications due to their favorable biophysical and chemical properties. However, n-type conductive polymers remain underexplored, primarily due to their limited long-term stability. In this study, it is demonstrated that the conductive polymer poly(benzimidazobenzophenanthroline) (BBL), commonly used in organic electronic devices, can effectively support neuronal cell viability and spreading, both as a bare cell culture material and when coated with exracellular matrix proteins. This work provides a preliminary validation of BBL's potential for future integration into bioelectronic devices and in biointerfacing.File | Dimensione | Formato | |
---|---|---|---|
Evaluation of the Biocompatibility of Poly benzimidazobenzophenanthroline BBL Polymer Films.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
3.92 MB
Formato
Adobe PDF
|
3.92 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.