Background: In Staphylococcus aureus, antimicrobial resistance (AMR) imposes significant fitness costs (FCs), including reduced growth rate, interbacterial competitiveness, and virulence. However, the FC molecular basis remains poorly understood. This study investigated the FC omic basis and compensatory adaptations in high-risk HA-, LA-, and CA-MRSA, acquiring mono- or cross-resistance to second-line daptomycin (DAP) and dalbavancin (DAL), as well as reduced susceptibility (RS) to first-line glycopeptides, i.e., vancomycin and teicoplanin (GLYs, i.e., VAN, TEC), related to the specific mechanism of action (MOA)-related AMR-mechanisms and genomic backgrounds, paying increasing FCs. Methods: The FC omic basis associated with mono- or cross- DAP-/DAL-R and GLY-RS were investigated by integrated omics. This study focused on core-genome essential (EG) and accessory virulence gene (VG) SNPomics and transcriptomics by Illumina MiSeq whole-genome sequencing, RNA-seq, and bioinformatic analysis. Results: Moderate impact nsSNPs were identified in EGs related to vital cellular functions and VGs. Comparative EG transcriptomics revealed differential expressions and key dysregulations-via asRNAs-prevalently affecting the protein synthesis and cell-envelope EG clusters, as well as the VG cluster. Conclusions: Our data, firstly, underlined the EG and VG mutation- and transcription-driven omic-based FC burden and the compensatory adaptations associated with the emergence of mono-DAP-R, cross-DAP-R/hGISA, and DAP-R/DAL-R/GISA, linked to specific MOA-related AMR-mechanisms and genomic backgrounds in high-risk HA-, LA-, and CA-MRSA.

Mutation- and Transcription-Driven Omic Burden of Daptomycin/Dalbavancin-R and Glycopeptide-RS Fitness Costs in High-Risk MRSA: A Nexus in Antimicrobial Resistance Mechanisms—Genome Proneness—Compensatory Adaptations

Eleonora Chines
Writing – Original Draft Preparation
;
Gaia Vertillo Aluisio
Data Curation
;
Maria Lina Mezzatesta
Supervision
;
Maria Carmela SANTAGATI
Supervision
;
VIVIANA CAFISO
Writing – Original Draft Preparation
2025-01-01

Abstract

Background: In Staphylococcus aureus, antimicrobial resistance (AMR) imposes significant fitness costs (FCs), including reduced growth rate, interbacterial competitiveness, and virulence. However, the FC molecular basis remains poorly understood. This study investigated the FC omic basis and compensatory adaptations in high-risk HA-, LA-, and CA-MRSA, acquiring mono- or cross-resistance to second-line daptomycin (DAP) and dalbavancin (DAL), as well as reduced susceptibility (RS) to first-line glycopeptides, i.e., vancomycin and teicoplanin (GLYs, i.e., VAN, TEC), related to the specific mechanism of action (MOA)-related AMR-mechanisms and genomic backgrounds, paying increasing FCs. Methods: The FC omic basis associated with mono- or cross- DAP-/DAL-R and GLY-RS were investigated by integrated omics. This study focused on core-genome essential (EG) and accessory virulence gene (VG) SNPomics and transcriptomics by Illumina MiSeq whole-genome sequencing, RNA-seq, and bioinformatic analysis. Results: Moderate impact nsSNPs were identified in EGs related to vital cellular functions and VGs. Comparative EG transcriptomics revealed differential expressions and key dysregulations-via asRNAs-prevalently affecting the protein synthesis and cell-envelope EG clusters, as well as the VG cluster. Conclusions: Our data, firstly, underlined the EG and VG mutation- and transcription-driven omic-based FC burden and the compensatory adaptations associated with the emergence of mono-DAP-R, cross-DAP-R/hGISA, and DAP-R/DAL-R/GISA, linked to specific MOA-related AMR-mechanisms and genomic backgrounds in high-risk HA-, LA-, and CA-MRSA.
2025
DAP/GLY MOA-related AMR mechanisms; compensatory mutations; essential genes; fitness cost omic basis; genome proneness; transcription-shifts; virulomics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/670694
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact