This study develops and evaluates advanced predictive models for the trajectory planning of autonomous vehicles (AVs) in roundabouts, with the aim of significantly contributing to sustainable urban mobility. Starting from the “MRoundabout” speed model, several Artificial Intelligence (AI) and Machine Learning (ML) techniques, including Linear Regression (LR), Random Forest (RF), Support Vector Regression (SVR), Gradient Boosting Regression (GBR), and Neural Networks (NNs), were applied to accurately emulate human driving behavior and optimize AV trajectories. The results indicate that neural networks achieved the best predictive performance, with R2 values of up to 0.88 for speed prediction, 0.98 for acceleration, and 0.94 for differential distance, significantly outperforming traditional models. GBR and SVR provided moderate improvements over LR but encountered difficulties predicting acceleration and distance variables. AI-driven tools, such as ChatGPT-4, facilitated data pre-processing, model tuning, and interpretation, reducing computational time and enhancing workflow efficiency. A key contribution of this research lies in demonstrating the potential of AI-based trajectory planning to enhance AV navigation, fostering smoother, safer, and more sustainable mobility. The proposed approaches contribute to reduced energy consumption, lower emissions, and decreased traffic congestion, effectively addressing challenges related to urban sustainability. Future research will incorporate real traffic interactions to further refine the adaptability and robustness of the model.

Advancing Sustainable Mobility: Artificial Intelligence Approaches for Autonomous Vehicle Trajectories in Roundabouts

Salvatore Leonardi;Natalia Distefano;
2025-01-01

Abstract

This study develops and evaluates advanced predictive models for the trajectory planning of autonomous vehicles (AVs) in roundabouts, with the aim of significantly contributing to sustainable urban mobility. Starting from the “MRoundabout” speed model, several Artificial Intelligence (AI) and Machine Learning (ML) techniques, including Linear Regression (LR), Random Forest (RF), Support Vector Regression (SVR), Gradient Boosting Regression (GBR), and Neural Networks (NNs), were applied to accurately emulate human driving behavior and optimize AV trajectories. The results indicate that neural networks achieved the best predictive performance, with R2 values of up to 0.88 for speed prediction, 0.98 for acceleration, and 0.94 for differential distance, significantly outperforming traditional models. GBR and SVR provided moderate improvements over LR but encountered difficulties predicting acceleration and distance variables. AI-driven tools, such as ChatGPT-4, facilitated data pre-processing, model tuning, and interpretation, reducing computational time and enhancing workflow efficiency. A key contribution of this research lies in demonstrating the potential of AI-based trajectory planning to enhance AV navigation, fostering smoother, safer, and more sustainable mobility. The proposed approaches contribute to reduced energy consumption, lower emissions, and decreased traffic congestion, effectively addressing challenges related to urban sustainability. Future research will incorporate real traffic interactions to further refine the adaptability and robustness of the model.
2025
artificial intelligence
autonomous vehicles
ChatGPT
machine learning
roundabouts
sustainable mobility
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/670732
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact