Galectin-1 (Gal-1) is a galactose-binding protein involved in various cellular functions. Gal-1’s activity has been suggested to be connected to two molecular concepts, which are, however, lacking experimental proof: a) enhanced binding affinity of Gal-1 toward membranes containing monosialotetrahexosylganglioside (GM1) over disialoganglioside GD1a and b) cross-linking of GM1’s by homodimers of Gal-1. We provide evidence about the specificity and the nature of the interaction of Gal-1 with model membranes containing GM1 or GD1a, employing a broad panel of fluorescence-based and label-free experimental techniques, complemented by atomistic biomolecular simulations. Our study demonstrates that Gal-1 indeed binds specifically to GM1 and not to GD1a when embedded in membranes over a wide range of concentrations (i.e., 30 nM to 20 μM). The apparent binding constant is about tens of micromoles. On the other hand, no evidence of Gal-1/GM1 cross-linking was observed. Our findings suggest that cross-linking does not result from sole interactions between GM1 and Gal-1, indicating that in a physiological context, additional triggers are needed, which shift the GM1/Gal-1 equilibria toward the membrane-bound homodimeric Gal-1.
Unraveling the GM1 Specificity of Galectin-1 Binding to Lipid Membranes
Scollo, Federica
;Maccarrone, Giuseppe;
2025-01-01
Abstract
Galectin-1 (Gal-1) is a galactose-binding protein involved in various cellular functions. Gal-1’s activity has been suggested to be connected to two molecular concepts, which are, however, lacking experimental proof: a) enhanced binding affinity of Gal-1 toward membranes containing monosialotetrahexosylganglioside (GM1) over disialoganglioside GD1a and b) cross-linking of GM1’s by homodimers of Gal-1. We provide evidence about the specificity and the nature of the interaction of Gal-1 with model membranes containing GM1 or GD1a, employing a broad panel of fluorescence-based and label-free experimental techniques, complemented by atomistic biomolecular simulations. Our study demonstrates that Gal-1 indeed binds specifically to GM1 and not to GD1a when embedded in membranes over a wide range of concentrations (i.e., 30 nM to 20 μM). The apparent binding constant is about tens of micromoles. On the other hand, no evidence of Gal-1/GM1 cross-linking was observed. Our findings suggest that cross-linking does not result from sole interactions between GM1 and Gal-1, indicating that in a physiological context, additional triggers are needed, which shift the GM1/Gal-1 equilibria toward the membrane-bound homodimeric Gal-1.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.