This study investigates the economic viability of extracting bioproducts from discarded cactus pear (Opuntia ficus-indica) waste in Sicily, where the cactus pear industry is well-established. The focus is on employing green extraction technologies, such as microwave-assisted methods, to produce valuable compounds like seed oil, pectin, and bioactive substances for use in the cosmetic, nutraceutical, and pharmaceutical industries. The results demonstrate that increasing the scale of production from 200 to 400 tons significantly enhances the financial performance of the operation, reducing the payback period from 6.5 to 4 years and yielding positive Net Present Value (NPV) and Internal Rate of Return (IRR) values, reaching up to 35.7 %. However, challenges such as the seasonality of raw material availability and the high energy requirements of green technologies are noted. These findings suggest that while the project is economically feasible, managing supply chain variability and optimising energy consumption are critical for long-term sustainability. Additionally, the increasing consumer demand for sustainable and functional products provides a strong market opportunity for these bioproducts, though competition from international players leveraging economies of scale could pose a threat. This study highlights the importance of integrating green technologies in bioeconomy projects and offers insights for policymakers and industry leaders. Policymakers can support these initiatives through incentives and regulations, while businesses in the cosmetic and nutraceutical sectors may find competitive advantages in the quality and sustainability of these bioproducts. Further research should explore alternative biomass sources and innovations in extraction efficiency to ensure continuous production and cost reductions.

Sustainable extraction of bioproducts from cactus pear waste: Economic viability and market opportunities in a green economy

Giuseppe Timpanaro
Conceptualization
;
Vera Teresa Foti
2025-01-01

Abstract

This study investigates the economic viability of extracting bioproducts from discarded cactus pear (Opuntia ficus-indica) waste in Sicily, where the cactus pear industry is well-established. The focus is on employing green extraction technologies, such as microwave-assisted methods, to produce valuable compounds like seed oil, pectin, and bioactive substances for use in the cosmetic, nutraceutical, and pharmaceutical industries. The results demonstrate that increasing the scale of production from 200 to 400 tons significantly enhances the financial performance of the operation, reducing the payback period from 6.5 to 4 years and yielding positive Net Present Value (NPV) and Internal Rate of Return (IRR) values, reaching up to 35.7 %. However, challenges such as the seasonality of raw material availability and the high energy requirements of green technologies are noted. These findings suggest that while the project is economically feasible, managing supply chain variability and optimising energy consumption are critical for long-term sustainability. Additionally, the increasing consumer demand for sustainable and functional products provides a strong market opportunity for these bioproducts, though competition from international players leveraging economies of scale could pose a threat. This study highlights the importance of integrating green technologies in bioeconomy projects and offers insights for policymakers and industry leaders. Policymakers can support these initiatives through incentives and regulations, while businesses in the cosmetic and nutraceutical sectors may find competitive advantages in the quality and sustainability of these bioproducts. Further research should explore alternative biomass sources and innovations in extraction efficiency to ensure continuous production and cost reductions.
2025
Bioproducts
Cactus pear waste
Circular economy
Economic viability
Green extraction technology
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/673669
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact