Energy-efficient integrated circuits require scaled-down supply voltages, posing challenges for analog design, particularly for operational transconductance amplifiers (OTAs) essential in high-accuracy CMOS feedback systems. Below 1 V, gate-driven OTAs are limited in common-mode input range and minimum supply voltage. This work investigates CMOS Bulk-Driven (BD) sub-threshold techniques as an efficient alternative for ultra-low voltage (ULV) and ultra-low power (ULP) designs. Although BD overcomes MOS threshold voltage limitations, historical challenges like lower transconductance, latch-up, and layout complexity hindered its use. Recent advancements in CMOS processes and the need for ULP solutions have revived industrial interest in BD. Through theoretical analysis and computer simulations, we explore BD topologies for ULP OTA input stages, classifying them as tailed/tail-less and class A/AB, evaluating their effectiveness for robust analog design, while offering valuable insights for circuit designers.

Bulk-Driven CMOS Differential Stages for Ultra-Low-Voltage Ultra-Low-Power Operational Transconductance Amplifiers: A Comparative Analysis

Muhammad Omer Shah
;
Andrea Ballo;Salvatore Pennisi
2025-01-01

Abstract

Energy-efficient integrated circuits require scaled-down supply voltages, posing challenges for analog design, particularly for operational transconductance amplifiers (OTAs) essential in high-accuracy CMOS feedback systems. Below 1 V, gate-driven OTAs are limited in common-mode input range and minimum supply voltage. This work investigates CMOS Bulk-Driven (BD) sub-threshold techniques as an efficient alternative for ultra-low voltage (ULV) and ultra-low power (ULP) designs. Although BD overcomes MOS threshold voltage limitations, historical challenges like lower transconductance, latch-up, and layout complexity hindered its use. Recent advancements in CMOS processes and the need for ULP solutions have revived industrial interest in BD. Through theoretical analysis and computer simulations, we explore BD topologies for ULP OTA input stages, classifying them as tailed/tail-less and class A/AB, evaluating their effectiveness for robust analog design, while offering valuable insights for circuit designers.
2025
bulk-driven differential pair
transconductance
ultra-low voltage
OTA
CMRR
PSRR
File in questo prodotto:
File Dimensione Formato  
r46.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.18 MB
Formato Adobe PDF
2.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/673849
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact