The electrochemical glucose oxidation reaction (GOR) presents an opportunity to produce hydrogen and high-value chemical products. Herein, we investigate the effect of Sn in Ni nanoparticles for the GOR to formic acid (FA). Electrochemical results show that the maximum activity is related to the amount of Ni, as Ni sites are responsible for catalyzing the GOR via the NiOOH/Ni(OH)2 pair. However, the GOR kinetics increases with the amount of Sn, associated with an enhancement of the OH− supply to the catalyst surface for Ni(OH)2 reoxidation to NiOOH. NiSn nanoparticles supported on carbon nanotubes (NiSn/CNT) exhibit excellent current densities and direct GOR via C−C cleavage mechanism, obtaining FA with a Faradaic efficiency (FE) of 93 % at 1.45 V vs. reversible hydrogen electrode. GOR selectivity is further studied by varying the applied potential, glucose concentration, reaction time, and temperature. FE toward FA production decreases due to formic overoxidation to carbonates at low glucose concentrations and high applied potentials, while acetic and lactic acids are obtained with high selectivity at high glucose concentrations and 55 °C. Density functional theory calculations show that the SnO2 facilitates the adsorption of glucose on the surface of Ni and promotes the formation of the catalytic active Ni3+ species.

Oxophilic Sn to Promote Glucose Oxidation to Formic Acid in Ni Nanoparticles

Spadaro M. C.;
2025-01-01

Abstract

The electrochemical glucose oxidation reaction (GOR) presents an opportunity to produce hydrogen and high-value chemical products. Herein, we investigate the effect of Sn in Ni nanoparticles for the GOR to formic acid (FA). Electrochemical results show that the maximum activity is related to the amount of Ni, as Ni sites are responsible for catalyzing the GOR via the NiOOH/Ni(OH)2 pair. However, the GOR kinetics increases with the amount of Sn, associated with an enhancement of the OH− supply to the catalyst surface for Ni(OH)2 reoxidation to NiOOH. NiSn nanoparticles supported on carbon nanotubes (NiSn/CNT) exhibit excellent current densities and direct GOR via C−C cleavage mechanism, obtaining FA with a Faradaic efficiency (FE) of 93 % at 1.45 V vs. reversible hydrogen electrode. GOR selectivity is further studied by varying the applied potential, glucose concentration, reaction time, and temperature. FE toward FA production decreases due to formic overoxidation to carbonates at low glucose concentrations and high applied potentials, while acetic and lactic acids are obtained with high selectivity at high glucose concentrations and 55 °C. Density functional theory calculations show that the SnO2 facilitates the adsorption of glucose on the surface of Ni and promotes the formation of the catalytic active Ni3+ species.
2025
Electrochemical oxidation
Electrochemistry
Formic acid
Formic acid
Glucose oxidation reaction
Glucose oxidation reaction
Hydrogen
Nickel
Nickel oxohydroxide
NiSn
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/675689
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact