: Microplastics (MPs) are ubiquitary environmental pollutants facilitated by anthropic activities as wastewaters (WWs) not properly treated or dispersed. Our study focused on the validation of an innovative prototype filter for its future applications in WWs Treatment Plants (WWTPs) to reduce the release of MPs in the environment. The aims of the study were: The WWTPs resulted in catching 85 % and 73 % of MPs >10 and MPs <10 μm, respectively; instead, the WWTPs-prototype treated outputs showed a further reduction of 99 % and 92 % of the uncaught MPs. The mussel haemolymphs analysis showed a decrease of 100 % and 95 %, respectively, for both MPs <10 and >10 μm in filtering treatment against the normal WWTPs outputs. We revealed longer LMS times in mussels exposed to prototype-filtered WWs (29-41 min) compared to the raw output of WWTPs (18-24 min). MF and q-PCR of all studied genes revealed a reduced genotoxicity in mussels exposed to prototype-treated WWs. Hence, the results demonstrated the prototype efficacy, and it will be tested in real WWTPs at a field scale in the next study.
Innovative prototype for the mitigation of water pollution from microplastics to safeguard the environment and health
Pulvirenti E.
Primo
;Conti G. O.
;Ferrante M.Ultimo
2025-01-01
Abstract
: Microplastics (MPs) are ubiquitary environmental pollutants facilitated by anthropic activities as wastewaters (WWs) not properly treated or dispersed. Our study focused on the validation of an innovative prototype filter for its future applications in WWs Treatment Plants (WWTPs) to reduce the release of MPs in the environment. The aims of the study were: The WWTPs resulted in catching 85 % and 73 % of MPs >10 and MPs <10 μm, respectively; instead, the WWTPs-prototype treated outputs showed a further reduction of 99 % and 92 % of the uncaught MPs. The mussel haemolymphs analysis showed a decrease of 100 % and 95 %, respectively, for both MPs <10 and >10 μm in filtering treatment against the normal WWTPs outputs. We revealed longer LMS times in mussels exposed to prototype-filtered WWs (29-41 min) compared to the raw output of WWTPs (18-24 min). MF and q-PCR of all studied genes revealed a reduced genotoxicity in mussels exposed to prototype-treated WWs. Hence, the results demonstrated the prototype efficacy, and it will be tested in real WWTPs at a field scale in the next study.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.