Early prediction of disability progression in multiple sclerosis (MS) remains challenging despite its critical importance for therapeutic decision-making. We present the first systematic evaluation of personalized federated learning (PFL) for 2-year MS disability progression prediction, leveraging multi-center real-world data from over 26,000 patients. While conventional federated learning (FL) enables privacy-aware collaborative modeling, it remains vulnerable to institutional data heterogeneity. PFL overcomes this challenge by adapting shared models to local data distributions without compromising privacy. We evaluated two personalization strategies: a novel AdaptiveDualBranchNet architecture with selective parameter sharing, and personalized fine-tuning of global models, benchmarked against centralized and client-specific approaches. Baseline FL underperformed relative to personalized methods, whereas personalization significantly improved performance, with personalized FedProx and FedAVG achieving ROC-AUC scores of 0.8398 ± 0.0019 and 0.8384 ± 0.0014, respectively. These findings establish personalization as critical for scalable, privacy-aware clinical prediction models and highlight its potential to inform earlier intervention strategies in MS and beyond.
Personalized federated learning for predicting disability progression in multiple sclerosis using real-world routine clinical data
Patti, Francesco;
2025-01-01
Abstract
Early prediction of disability progression in multiple sclerosis (MS) remains challenging despite its critical importance for therapeutic decision-making. We present the first systematic evaluation of personalized federated learning (PFL) for 2-year MS disability progression prediction, leveraging multi-center real-world data from over 26,000 patients. While conventional federated learning (FL) enables privacy-aware collaborative modeling, it remains vulnerable to institutional data heterogeneity. PFL overcomes this challenge by adapting shared models to local data distributions without compromising privacy. We evaluated two personalization strategies: a novel AdaptiveDualBranchNet architecture with selective parameter sharing, and personalized fine-tuning of global models, benchmarked against centralized and client-specific approaches. Baseline FL underperformed relative to personalized methods, whereas personalization significantly improved performance, with personalized FedProx and FedAVG achieving ROC-AUC scores of 0.8398 ± 0.0019 and 0.8384 ± 0.0014, respectively. These findings establish personalization as critical for scalable, privacy-aware clinical prediction models and highlight its potential to inform earlier intervention strategies in MS and beyond.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.