Pathological conditions characterized by systemic inflammation and oxidative stress can often impair the muscle cells efficiency. The gradual decline of muscle mass and tone drastically reduces the motor skills of the patient affecting the simplest daily activities. Muscle dysfunction, resulting in the deterioration of muscle tissue, can lead to a serious situation of muscle wasting that can evolve into sarcopenia. In addition, muscle dysfunction causing metabolic disorders impairs the quality of life. The function of skeletal muscle is deeply conditioned by environmental, nutritional, physical, and genetic factors. Proper nutrition with balanced protein and vitamins intake and an active lifestyle helps to strengthen tissues and counteract pathological conditions and generalized weakness. Vitamin D performs antioxidant actions, indispensable in skeletal muscle. Epidemiological data indicate that vitamin D deficiency is a widespread status in the world. Vitamin D deficiency induces mitochondrial failure, reduced production of adenosine triphosphate, oxidative injury, and compromised muscle function. Among the different types of antioxidants, vitamin D has been identified as the main compound that can improve the effectiveness of the treatment for muscle weakness and improve conditions related to sarcopenia. The purpose of this review is to analyze molecular processes used by vitamin D against oxidative stress and how it can affect muscle function in order to assess whether its use as a supplement in inflammatory pathologies and oxidative stress can be useful to prevent deterioration and improve/maintain muscle function.
Antioxidative effects of vitamin D in muscle dysfunction
Russo, Cristina;Valle, Maria Stella Carmela;Malaguarnera, Lucia
2023-01-01
Abstract
Pathological conditions characterized by systemic inflammation and oxidative stress can often impair the muscle cells efficiency. The gradual decline of muscle mass and tone drastically reduces the motor skills of the patient affecting the simplest daily activities. Muscle dysfunction, resulting in the deterioration of muscle tissue, can lead to a serious situation of muscle wasting that can evolve into sarcopenia. In addition, muscle dysfunction causing metabolic disorders impairs the quality of life. The function of skeletal muscle is deeply conditioned by environmental, nutritional, physical, and genetic factors. Proper nutrition with balanced protein and vitamins intake and an active lifestyle helps to strengthen tissues and counteract pathological conditions and generalized weakness. Vitamin D performs antioxidant actions, indispensable in skeletal muscle. Epidemiological data indicate that vitamin D deficiency is a widespread status in the world. Vitamin D deficiency induces mitochondrial failure, reduced production of adenosine triphosphate, oxidative injury, and compromised muscle function. Among the different types of antioxidants, vitamin D has been identified as the main compound that can improve the effectiveness of the treatment for muscle weakness and improve conditions related to sarcopenia. The purpose of this review is to analyze molecular processes used by vitamin D against oxidative stress and how it can affect muscle function in order to assess whether its use as a supplement in inflammatory pathologies and oxidative stress can be useful to prevent deterioration and improve/maintain muscle function.File | Dimensione | Formato | |
---|---|---|---|
Russo et al., Redox Exp Med 2023.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.54 MB
Formato
Adobe PDF
|
2.54 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.