A high level of data integrity is a strong requirement in systems where the life of people depends on accurate and timely responses. In healthcare emergency response systems, a centralized authority that handles data related to occurring events is prone to challenges, such as, e.g., disputes over event timestamps and data authenticity. To address both the potential lack of trust among collaborating parties and the inability of an authority to clearly certify events by itself, this paper proposes a blockchain-based framework designed to provide proof of integrity and authenticity of data in healthcare emergency response systems. The proposed solution integrates blockchain technology to certify the accuracy of events throughout their incident lifecycle. Critical events are timestamped and hashed using SHA-256; then, such hashes are stored immutably on an EVM-compatible blockchain via smart contracts. The system combines blockchain technology with cloud storage to ensure scalability, security, and transparency. Blockchain technology provides the advantage of eliminating a trusted server, providing timestamping and reducing costs by forgoing such a service. The experimental results, using publicly available incident data, demonstrated the feasibility and effectiveness of this approach. The system provides a cost-effective, scalable solution for managing incident data while keeping a proof of their integrity. The proposed blockchain-based framework offers a reliable, transparent mechanism for certifying incident-related data. This fosters trust among healthcare emergency response system actors.
A Blockchain-Based Strategy for Certifying Timestamps in a Distributed Healthcare Emergency Response Systems
Daniele Marletta;Alessandro Midolo;Emiliano Tramontana
2025-01-01
Abstract
A high level of data integrity is a strong requirement in systems where the life of people depends on accurate and timely responses. In healthcare emergency response systems, a centralized authority that handles data related to occurring events is prone to challenges, such as, e.g., disputes over event timestamps and data authenticity. To address both the potential lack of trust among collaborating parties and the inability of an authority to clearly certify events by itself, this paper proposes a blockchain-based framework designed to provide proof of integrity and authenticity of data in healthcare emergency response systems. The proposed solution integrates blockchain technology to certify the accuracy of events throughout their incident lifecycle. Critical events are timestamped and hashed using SHA-256; then, such hashes are stored immutably on an EVM-compatible blockchain via smart contracts. The system combines blockchain technology with cloud storage to ensure scalability, security, and transparency. Blockchain technology provides the advantage of eliminating a trusted server, providing timestamping and reducing costs by forgoing such a service. The experimental results, using publicly available incident data, demonstrated the feasibility and effectiveness of this approach. The system provides a cost-effective, scalable solution for managing incident data while keeping a proof of their integrity. The proposed blockchain-based framework offers a reliable, transparent mechanism for certifying incident-related data. This fosters trust among healthcare emergency response system actors.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.