Background: The implementation of advanced agronomical strategies, including the use of antitranspirant, in order to mitigate the negative effects of environmental stress, particularly heat stress on plants, has become a focal area of research in the Mediterranean basin. This region is characterized by hot and dry summer that affects plant physiology. Methods: The experiment was carried out in Sicily (South Italy) on 12-year-old avocado cv. Hass grafted onto Walter Hole rootstock. Two subplots each of forty homogenous trees were selected and treated (1) with calcium carbonate (DECCO Shield (R)) and (2) with water (control) at the following phenological phases: 711, 712 and 715 BBCH. The climatic parameters were recorded throughout the year. Physiological measurements (leaf transpiration, net photosynthesis, stomatal conductance, leaf water potential) were measured at 105, 131 and 168 days after full bloom. Fruit growth was monitored, and physico-chemical analyses were carried out at harvest. Results: The antitranspirant increased photosynthesis and stomatal conductance and reduced leaf transpiration (-26.1%). Fruit growth rate increased during summer, although no morphological and qualitative difference was observed at harvest. PCA highlighted the positive effect of the calcium carbonate on overall plant physiology. Conclusions: Antitranspirant foliar application reduced heat stress effects by improving physiological responses of avocado trees.

Physiological Response to Foliar Application of Antitranspirant on Avocado Trees (Persea americana) in a Mediterranean Environment

Modica G.
Primo
;
Arcidiacono F.;La Malfa S.;Gentile A.;Continella A.
Ultimo
2025-01-01

Abstract

Background: The implementation of advanced agronomical strategies, including the use of antitranspirant, in order to mitigate the negative effects of environmental stress, particularly heat stress on plants, has become a focal area of research in the Mediterranean basin. This region is characterized by hot and dry summer that affects plant physiology. Methods: The experiment was carried out in Sicily (South Italy) on 12-year-old avocado cv. Hass grafted onto Walter Hole rootstock. Two subplots each of forty homogenous trees were selected and treated (1) with calcium carbonate (DECCO Shield (R)) and (2) with water (control) at the following phenological phases: 711, 712 and 715 BBCH. The climatic parameters were recorded throughout the year. Physiological measurements (leaf transpiration, net photosynthesis, stomatal conductance, leaf water potential) were measured at 105, 131 and 168 days after full bloom. Fruit growth was monitored, and physico-chemical analyses were carried out at harvest. Results: The antitranspirant increased photosynthesis and stomatal conductance and reduced leaf transpiration (-26.1%). Fruit growth rate increased during summer, although no morphological and qualitative difference was observed at harvest. PCA highlighted the positive effect of the calcium carbonate on overall plant physiology. Conclusions: Antitranspirant foliar application reduced heat stress effects by improving physiological responses of avocado trees.
2025
leaf transpiration
net photosynthesis
stomatal conductance
leaf water potential
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/685391
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact