Cell–cell communication and extracellular matrix (ECM) organization in a bone microenvironment are essential to replicate the bone microenvironment accurately. In this study, the extracellular matrix (ECM) was emulated by incorporating M13 phages, selected through phage display for displaying engineered peptides that mimic bone matrix proteins, into human osteoblast cultures to develop a three-dimensional bone model (3D BMP-Phage). Comprehensive analysis was performed to investigate: (i) the morphological development of spheroids, assessed by optical microscopy and quantified via fractal dimension analysis using box-counting algorithms; (ii) the biochemical composition of the extracellular matrix, evaluated by Raman spectroscopy; (iii) ECM protein deposition, analyzed through immunofluorescence staining; (iv) matrix mineralization, assessed by Alizarin Red staining and alkaline phosphatase (ALP) activity assay; and (v) osteogenic gene expression, measured by quantitative RT-PCR. The findings demonstrate that the 3D BMP-Phage model, facilitated by a cocktail of bone-mimicking peptides, enhances structural integrity, ECM complexity, mineralization, and osteogenic pathways compared to the control. This novel approach replicates key aspects of the bone microenvironment, providing a valuable platform for advanced physiological and regenerative medicine research under controlled conditions.
Formation of 3D Human Osteoblast Spheroids Incorporating Extracellular Matrix-Mimetic Phage Peptides as a Surrogate Bone Tissue Model
Dario Morganti;Emanuele Luigi Sciuto;Massimo Orazio Spata;Sabrina Conoci
2025-01-01
Abstract
Cell–cell communication and extracellular matrix (ECM) organization in a bone microenvironment are essential to replicate the bone microenvironment accurately. In this study, the extracellular matrix (ECM) was emulated by incorporating M13 phages, selected through phage display for displaying engineered peptides that mimic bone matrix proteins, into human osteoblast cultures to develop a three-dimensional bone model (3D BMP-Phage). Comprehensive analysis was performed to investigate: (i) the morphological development of spheroids, assessed by optical microscopy and quantified via fractal dimension analysis using box-counting algorithms; (ii) the biochemical composition of the extracellular matrix, evaluated by Raman spectroscopy; (iii) ECM protein deposition, analyzed through immunofluorescence staining; (iv) matrix mineralization, assessed by Alizarin Red staining and alkaline phosphatase (ALP) activity assay; and (v) osteogenic gene expression, measured by quantitative RT-PCR. The findings demonstrate that the 3D BMP-Phage model, facilitated by a cocktail of bone-mimicking peptides, enhances structural integrity, ECM complexity, mineralization, and osteogenic pathways compared to the control. This novel approach replicates key aspects of the bone microenvironment, providing a valuable platform for advanced physiological and regenerative medicine research under controlled conditions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.