Next-Generation Sequencing (NGS) techniques have become a cornerstone of molecular diagnostics, enabling high-throughput, parallel analysis of multiple disease-associated genes. Their targeted design allows streamlined interpretation and optimised diagnostic yield, especially in disorders with known genetic heterogeneity. In this review, we provide a comprehensive overview of the clinical application of NGS techniques—targeted gene panels, whole exome sequencing (WES) and whole genome sequencing (WGS)—detailing the methodological workflow and the critical steps involved in their implementation. Particular emphasis is placed on the genes identified through NGS that are implicated in neurodevelopmental, neurodegenerative, psychiatric, neuromuscular, cardiovascular, and metabolic disorders. We also compare the advantages and limitations of panel-based diagnostics versus WES and WGS, and discuss future directions, including the integration of long-read sequencing technologies into multidisciplinary clinical practice. Finally, we consider how these advances may ultimately bridge biomedical research and clinical practise to improve the diagnosis and management of multifactorial diseases.
NGS Approaches in Clinical Diagnostics: From Workflow to Disease-Specific Applications
Desiree Brancato;Simone Treccarichi;Elvira Coniglio;Salvatore Saccone;Concetta Federico
2025-01-01
Abstract
Next-Generation Sequencing (NGS) techniques have become a cornerstone of molecular diagnostics, enabling high-throughput, parallel analysis of multiple disease-associated genes. Their targeted design allows streamlined interpretation and optimised diagnostic yield, especially in disorders with known genetic heterogeneity. In this review, we provide a comprehensive overview of the clinical application of NGS techniques—targeted gene panels, whole exome sequencing (WES) and whole genome sequencing (WGS)—detailing the methodological workflow and the critical steps involved in their implementation. Particular emphasis is placed on the genes identified through NGS that are implicated in neurodevelopmental, neurodegenerative, psychiatric, neuromuscular, cardiovascular, and metabolic disorders. We also compare the advantages and limitations of panel-based diagnostics versus WES and WGS, and discuss future directions, including the integration of long-read sequencing technologies into multidisciplinary clinical practice. Finally, we consider how these advances may ultimately bridge biomedical research and clinical practise to improve the diagnosis and management of multifactorial diseases.| File | Dimensione | Formato | |
|---|---|---|---|
|
ijms-26-09597-v2.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.33 MB
Formato
Adobe PDF
|
2.33 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


