The molecular quadratic hyperpolarizabilities of a wide series of pi-conjugated, donor-acceptor chromophores in various solvation media are calculated using the INDO/S (ZINDO) sum over excited particle hole states formalism. The energy terms of the perturbation theory are corrected for solvent effects by means of a continuum Onsager cavity model, based on the reaction field model. Calculated hyperpolarizability values including solvent effects are in excellent agreement with experimental electric field induced second-harmonic generation data taken in solution. The calculations show that red shifts of the lowest energy electronic charge-transfer transition upon solvation are the most important feature altering hyperpolarizability values on passing from the gas phase to solution. A linear correlation found between the hyperpolarizability and the energy of the lowest charge-transfer transition demonstrates the general validity of the simple two-state model in predicting solvation trends in hyperpolarizability for donor-acceptor chromophores. The consistency of this model is probed by calculating chromophore hyperpolarizabilities in different solvents and for different fundamental laser frequencies.

ENVIRONMENTAL-EFFECTS ON NONLINEAR-OPTICAL CHROMOPHORE PERFORMANCE - CALCULATION OF MOLECULAR QUADRATIC HYPERPOLARIZABILITIES IN SOLVATING MEDIA

DI BELLA, Santo;
1994-01-01

Abstract

The molecular quadratic hyperpolarizabilities of a wide series of pi-conjugated, donor-acceptor chromophores in various solvation media are calculated using the INDO/S (ZINDO) sum over excited particle hole states formalism. The energy terms of the perturbation theory are corrected for solvent effects by means of a continuum Onsager cavity model, based on the reaction field model. Calculated hyperpolarizability values including solvent effects are in excellent agreement with experimental electric field induced second-harmonic generation data taken in solution. The calculations show that red shifts of the lowest energy electronic charge-transfer transition upon solvation are the most important feature altering hyperpolarizability values on passing from the gas phase to solution. A linear correlation found between the hyperpolarizability and the energy of the lowest charge-transfer transition demonstrates the general validity of the simple two-state model in predicting solvation trends in hyperpolarizability for donor-acceptor chromophores. The consistency of this model is probed by calculating chromophore hyperpolarizabilities in different solvents and for different fundamental laser frequencies.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/68984
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 143
  • ???jsp.display-item.citation.isi??? 147
social impact