The 21 cm transition from neutral Hydrogen promises to be the best observational probe of the Epoch of Reionization (EoR). This has led to the construction of low-frequency radio interferometric arrays, such as the Hydrogen Epoch of Reionization Array (HERA), aimed at systematically mapping this emission for the first time. Precision calibration, however, is a requirement in 21 cm radio observations. Due to the spatial compactness of HERA, the array is prone to the effects of mutual coupling, which inevitably lead to non-smooth calibration errors that contaminate the data. When unsmooth gains are used in calibration, intrinsically spectrally smooth foreground emission begins to contaminate the data in a way that can prohibit a clean detection of the cosmological EoR signal. In this paper, we show that the effects of mutual coupling on calibration quality can be reduced by applying custom time-domain filters to the data prior to calibration. We find that more robust calibration solutions are derived when filtering in this way, which reduces the observed foreground power leakage. Specifically, we find a reduction of foreground power leakage by 2 orders of magnitude at k ≈ 0.5 h Mpc−1.

Mitigating calibration errors from mutual coupling with time-domain filtering of 21 cm cosmological radio observations

Mesinger A.;
2024-01-01

Abstract

The 21 cm transition from neutral Hydrogen promises to be the best observational probe of the Epoch of Reionization (EoR). This has led to the construction of low-frequency radio interferometric arrays, such as the Hydrogen Epoch of Reionization Array (HERA), aimed at systematically mapping this emission for the first time. Precision calibration, however, is a requirement in 21 cm radio observations. Due to the spatial compactness of HERA, the array is prone to the effects of mutual coupling, which inevitably lead to non-smooth calibration errors that contaminate the data. When unsmooth gains are used in calibration, intrinsically spectrally smooth foreground emission begins to contaminate the data in a way that can prohibit a clean detection of the cosmological EoR signal. In this paper, we show that the effects of mutual coupling on calibration quality can be reduced by applying custom time-domain filters to the data prior to calibration. We find that more robust calibration solutions are derived when filtering in this way, which reduces the observed foreground power leakage. Specifically, we find a reduction of foreground power leakage by 2 orders of magnitude at k ≈ 0.5 h Mpc−1.
2024
cosmology: dark ages
cosmology: observations
first stars
instrumentation: interferometers
methods: data analysis
reionization
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/691365
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact