Background: Pancreatic lipase (PL), the principal enzyme catalyzing the hydrolysis of dietary triacylglycerols in the intestinal lumen, is pivotal for efficient lipid absorption and plays a central role in metabolic homeostasis. Enhanced PL activity promotes excessive lipid assimilation and contributes to positive energy balance, key pathophysiological mechanisms underlying the escalating global prevalence of obesity—a complex, multifactorial condition strongly associated with metabolic disorders, including type 2 diabetes mellitus and cardiovascular disease. Inhibition of pancreatic lipase (PL) constitutes a well-established therapeutic approach for attenuating dietary lipid absorption and mitigating obesity. Methods: With the aim to identify putative PL inhibitors, a Structure-Based Virtual Screening (SBVS) of PhytoHub database naturally occurring derivatives was performed. A refined library of 10,404 phytochemicals was virtually screened against a crystal structure of pancreatic lipase. Candidates were filtered out based on binding affinity, Lipinski’s Rule of Five, and structural clustering, resulting in six lead compounds. Results: In vitro, enzymatic assays confirmed theoretical suggestions, highlighting Pinoresinol as the best PL inhibitor. Molecular dynamics simulations, performed to investigate the stability of protein–ligand complexes, revealed key interactions, such as persistent hydrogen bonding to catalytic residues. Conclusions: This integrative computational–experimental workflow highlighted new promising natural PL inhibitors, laying the foundation for future development of safe, plant-derived anti-obesity therapeutics.
Leveraging Natural Compounds for Pancreatic Lipase Inhibition via Virtual Screening
Claudia Sciacca;Nunzio Cardullo;Vera Muccilli;
2025-01-01
Abstract
Background: Pancreatic lipase (PL), the principal enzyme catalyzing the hydrolysis of dietary triacylglycerols in the intestinal lumen, is pivotal for efficient lipid absorption and plays a central role in metabolic homeostasis. Enhanced PL activity promotes excessive lipid assimilation and contributes to positive energy balance, key pathophysiological mechanisms underlying the escalating global prevalence of obesity—a complex, multifactorial condition strongly associated with metabolic disorders, including type 2 diabetes mellitus and cardiovascular disease. Inhibition of pancreatic lipase (PL) constitutes a well-established therapeutic approach for attenuating dietary lipid absorption and mitigating obesity. Methods: With the aim to identify putative PL inhibitors, a Structure-Based Virtual Screening (SBVS) of PhytoHub database naturally occurring derivatives was performed. A refined library of 10,404 phytochemicals was virtually screened against a crystal structure of pancreatic lipase. Candidates were filtered out based on binding affinity, Lipinski’s Rule of Five, and structural clustering, resulting in six lead compounds. Results: In vitro, enzymatic assays confirmed theoretical suggestions, highlighting Pinoresinol as the best PL inhibitor. Molecular dynamics simulations, performed to investigate the stability of protein–ligand complexes, revealed key interactions, such as persistent hydrogen bonding to catalytic residues. Conclusions: This integrative computational–experimental workflow highlighted new promising natural PL inhibitors, laying the foundation for future development of safe, plant-derived anti-obesity therapeutics.| File | Dimensione | Formato | |
|---|---|---|---|
|
pharmaceuticals-18-01246-v2.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.49 MB
Formato
Adobe PDF
|
2.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


