The rapid expansion of photovoltaics is driven by significant reduction in costs. However, given the surface requirements for photovoltaic development, utilizing water surfaces for floating photovoltaic (FPV) systems presents a promising solution. To enhance the cost-effectiveness of these systems, bifacial modules and tracking systems can be employed. While numerous experimental studies have evaluated the performance of fixed-configuration FPVs, floating tracking configurations remain underexplored. In addition, various simulation tools offer insights into different configurations, but their different assumptions often yield inconsistent results. This study focuses on the experimental evaluation of a horizontal axis tracking bifacial FPV (HT-bFPV) system. Over one year, the HT-bFPV system was monitored at the FPV test bed of “Enel Innovation Hub & Lab” in Catania, Italy. The experimental results were compared with simulated outcomes using two software tools, to assess their precision in calculating the HT-bFPV performances. The results reveal that the module temperature of the HT-bFPV system is 3 °C to 6 °C lower than the temperatures calculated by System Advisor Model and Photovoltaic system software, respectively. The yearly reference yield of 2139 kWh/kW produced a final yield of 1801 kWh/kW. The yearly performance ratio of the HT-bFPV system was 0.86, which improved by 1.8% when adjusted for temperature. The simulation results closely matched the experimental data, validating the system's performance. Furthermore, it was confirmed that the HT-bFPV system can produce up to 13.3% more energy with more potential in sites with higher latitudes compared with a similar fixed system.

Experimental and Simulated Performance Evaluation of Bifacial Photovoltaic Floating System With a Horizontal Single-Axial Tracker

Tina G. M.;Mannino G.;Canino A.;
2025-01-01

Abstract

The rapid expansion of photovoltaics is driven by significant reduction in costs. However, given the surface requirements for photovoltaic development, utilizing water surfaces for floating photovoltaic (FPV) systems presents a promising solution. To enhance the cost-effectiveness of these systems, bifacial modules and tracking systems can be employed. While numerous experimental studies have evaluated the performance of fixed-configuration FPVs, floating tracking configurations remain underexplored. In addition, various simulation tools offer insights into different configurations, but their different assumptions often yield inconsistent results. This study focuses on the experimental evaluation of a horizontal axis tracking bifacial FPV (HT-bFPV) system. Over one year, the HT-bFPV system was monitored at the FPV test bed of “Enel Innovation Hub & Lab” in Catania, Italy. The experimental results were compared with simulated outcomes using two software tools, to assess their precision in calculating the HT-bFPV performances. The results reveal that the module temperature of the HT-bFPV system is 3 °C to 6 °C lower than the temperatures calculated by System Advisor Model and Photovoltaic system software, respectively. The yearly reference yield of 2139 kWh/kW produced a final yield of 1801 kWh/kW. The yearly performance ratio of the HT-bFPV system was 0.86, which improved by 1.8% when adjusted for temperature. The simulation results closely matched the experimental data, validating the system's performance. Furthermore, it was confirmed that the HT-bFPV system can produce up to 13.3% more energy with more potential in sites with higher latitudes compared with a similar fixed system.
2025
Bifacial
floating photovoltaic (FPV)
horizontal axis
performance
tracking
File in questo prodotto:
File Dimensione Formato  
Experimental and Simulated Performance Evaluation.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.32 MB
Formato Adobe PDF
2.32 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/693309
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact