The Mediterranean region is currently experiencing the effects of a climate crisis, marked by an increase in the frequency and intensity of drought events. Climate variability has led to prolonged periods of drought, even in areas not traditionally classified as arid. These events have significant impacts on water resources, agricultural productivity, and socioeconomic systems. This study investigates the evolution of meteorological, hydrological, and socioeconomic droughts using the Standardized Precipitation Index (SPI) at time scales of 3, 12, and 24 months in a Mediterranean region identified as particularly vulnerable to climate change. Observational data from local meteorological stations were used for the 1991–2020 baseline period. Future climate projections were derived from the MPI-ESM model under the RCP 4.5 and RCP 8.5 scenarios, extending to the year 2080. Data were aggregated on a 0.50◦ × 0.50◦ spatial grid and bias-corrected using linear scaling. The Kolmogorov–Smirnov test was applied to assess the statistical compatibility between observed and projected precipitation data. Results indicate a substantial decline in annual precipitation, with reductions of up to 20% under the RCP 8.5 scenario for the period 2051–2080, compared to the reference period. The frequency of severe and extreme drought events is projected to increase by 30–50% in several grid meshes, especially during summer. Conversely, altered weather patterns in other areas may increase the likelihood of flood events. This study identifies the grid meshes most vulnerable to drought, highlighting the urgent need for adaptive water management strategies to ensure agricultural sustainability and reduce the socioeconomic impacts of climate-induced drought.
Future Dynamics of Drought in Areas at Risk: An Interpretation of RCP Projections on a Regional Scale
Pietro Monforte
;Sebastiano Imposa
2025-01-01
Abstract
The Mediterranean region is currently experiencing the effects of a climate crisis, marked by an increase in the frequency and intensity of drought events. Climate variability has led to prolonged periods of drought, even in areas not traditionally classified as arid. These events have significant impacts on water resources, agricultural productivity, and socioeconomic systems. This study investigates the evolution of meteorological, hydrological, and socioeconomic droughts using the Standardized Precipitation Index (SPI) at time scales of 3, 12, and 24 months in a Mediterranean region identified as particularly vulnerable to climate change. Observational data from local meteorological stations were used for the 1991–2020 baseline period. Future climate projections were derived from the MPI-ESM model under the RCP 4.5 and RCP 8.5 scenarios, extending to the year 2080. Data were aggregated on a 0.50◦ × 0.50◦ spatial grid and bias-corrected using linear scaling. The Kolmogorov–Smirnov test was applied to assess the statistical compatibility between observed and projected precipitation data. Results indicate a substantial decline in annual precipitation, with reductions of up to 20% under the RCP 8.5 scenario for the period 2051–2080, compared to the reference period. The frequency of severe and extreme drought events is projected to increase by 30–50% in several grid meshes, especially during summer. Conversely, altered weather patterns in other areas may increase the likelihood of flood events. This study identifies the grid meshes most vulnerable to drought, highlighting the urgent need for adaptive water management strategies to ensure agricultural sustainability and reduce the socioeconomic impacts of climate-induced drought.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


