Nanowires have generated considerable interest as nanoscale interconnects and as active components of both electronic and electromechanical devices. However, in many cases, manipulation and modification of nanowires are required to fully realize their potential. It is essential, for instance, to control the orientation and positioning of nanowires in some specific applications. This work demonstrates a simple method to reversibly control the shape and the orientation of Ge nanowires using ion beams. Crystalline nanowires were amorphized by 30 keV Ga+ implantation. Subsequently, viscous flow and plastic deformation occurred causing the nanowires to bend toward the beam direction. The bending was reversed multiple times by ion implanting the opposite side of the nanowires, resulting in straightening and subsequent bending into that opposite direction. This effect demonstrates the detailed manipulation of nanoscale structures is possible through the use of ion irradiation.

Nanoscale manipulation of Ge nanowires by ion irradiation

ROMANO, LUCIA;
2009-01-01

Abstract

Nanowires have generated considerable interest as nanoscale interconnects and as active components of both electronic and electromechanical devices. However, in many cases, manipulation and modification of nanowires are required to fully realize their potential. It is essential, for instance, to control the orientation and positioning of nanowires in some specific applications. This work demonstrates a simple method to reversibly control the shape and the orientation of Ge nanowires using ion beams. Crystalline nanowires were amorphized by 30 keV Ga+ implantation. Subsequently, viscous flow and plastic deformation occurred causing the nanowires to bend toward the beam direction. The bending was reversed multiple times by ion implanting the opposite side of the nanowires, resulting in straightening and subsequent bending into that opposite direction. This effect demonstrates the detailed manipulation of nanoscale structures is possible through the use of ion irradiation.
2009
nanowires; ion beam; germanium
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/7002
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 40
social impact