This paper studies the Cauchy problem of the Navier-Stokes equation.We show that if the two velocity components satisfes a bounded condition,then the solution can be smoothly extended after t = T. This gives an answer to an open problem raised years ago.

A new regularity criterion for the Navier-Stokes equations in terms of the two components of the velocity

RAGUSA, Maria Alessandra
2016-01-01

Abstract

This paper studies the Cauchy problem of the Navier-Stokes equation.We show that if the two velocity components satisfes a bounded condition,then the solution can be smoothly extended after t = T. This gives an answer to an open problem raised years ago.
2016
regularity; Navier-Stokes equations; Besov spaces
File in questo prodotto:
File Dimensione Formato  
GALA_RAGUSA_AVELOCITY_Navier_Stokes_2016.pdf

accesso aperto

Licenza: Dominio pubblico
Dimensione 50.78 kB
Formato Adobe PDF
50.78 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/79948
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 20
social impact