Within the tight-binding approximation, we study the dependence of the electronic band structure and of the optical conductivity of a graphene single layer on the modulus and direction of applied uniaxial strain. While the Dirac-cone approximation, albeit with a deformed cone, is robust for sufficiently small strain, band dispersion linearity breaks down along a given direction, corresponding to the development of anisotropic massive low-energy excitations. We recover a linear behavior of the low-energy density of states, as long as the cone approximation holds, while a band gap opens for sufficiently intense strain, for almost all, generic strain directions. This may be interpreted in terms of an electronic topological transition, corresponding to a change in topology of the Fermi line, and to the merging of two inequivalent Dirac points as a function of strain. We propose that these features may be observed in the frequency dependence of the longitudinal-optical conductivity in the visible range, as a function of strain modulus and direction, as well as of field orientation.

Strain effect on the optical conductivity of graphene

PELLEGRINO F. M. D.;ANGILELLA G. G. N.
;
PUCCI R
2010-01-01

Abstract

Within the tight-binding approximation, we study the dependence of the electronic band structure and of the optical conductivity of a graphene single layer on the modulus and direction of applied uniaxial strain. While the Dirac-cone approximation, albeit with a deformed cone, is robust for sufficiently small strain, band dispersion linearity breaks down along a given direction, corresponding to the development of anisotropic massive low-energy excitations. We recover a linear behavior of the low-energy density of states, as long as the cone approximation holds, while a band gap opens for sufficiently intense strain, for almost all, generic strain directions. This may be interpreted in terms of an electronic topological transition, corresponding to a change in topology of the Fermi line, and to the merging of two inequivalent Dirac points as a function of strain. We propose that these features may be observed in the frequency dependence of the longitudinal-optical conductivity in the visible range, as a function of strain modulus and direction, as well as of field orientation.
2010
graphene; strain; optical properties
File in questo prodotto:
File Dimensione Formato  
Pellegrino_PRB_2010_81_035411.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 1 MB
Formato Adobe PDF
1 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/80034
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 187
  • ???jsp.display-item.citation.isi??? 176
social impact