In this paper we study the equation $-u''+V(x)u=W(x)f(u),\ x\in\mathbb{R},$ where the nonlinear term $f$ has certain oscillatory behaviour. Via two different variational arguments we show the existence of infinitely many homoclinic solutions whose norms in an appropriate functional space which involves the potential $V$ tend to zero (resp. at infinity) whenever $f$ oscillates at zero (resp. at infinity). Unlike in classical results, neither symmetry property on $f$ nor periodicity on the potentials $V$ and $W$ are required.
One dimensional scalar field equations involving an oscillatory nonlinear term
FARACI, FRANCESCA;
2007-01-01
Abstract
In this paper we study the equation $-u''+V(x)u=W(x)f(u),\ x\in\mathbb{R},$ where the nonlinear term $f$ has certain oscillatory behaviour. Via two different variational arguments we show the existence of infinitely many homoclinic solutions whose norms in an appropriate functional space which involves the potential $V$ tend to zero (resp. at infinity) whenever $f$ oscillates at zero (resp. at infinity). Unlike in classical results, neither symmetry property on $f$ nor periodicity on the potentials $V$ and $W$ are required.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.