In past years, seismic response of asymmetric structures has been frequently analysed by means of single-storey models, because of their simplicity and low computational cost. However, it is widely believed that use of more realistic multi-storey models is needed in order to investigate effects of some system characteristics (such as overstrength, higher modes of vibration, etc.) that make behaviour of multi-storey schemes different from that of single-storey systems. This paper examines effects of the overstrength in element cross-sections on the seismic behaviour of multi-storey asymmetric buildings. It is shown that in actual buildings this characteristic, which is sometimes very variable both in plan and along the height of the building, may lead to distributions of ductility demands different from those expected according to the results from single-storey models. Consequently, torsional provisions, which aim at reducing ductility demands of single-storey asymmetric systems to those of the corresponding torsionally balanced systems, should be re-checked in light of the behaviour of realistic multi-storey buildings.

Effect of overstrength on the seismic behaviour of multi-storey regularly asymmetric buildings

MARINO, EDOARDO MICHELE;ROSSI, PIER PAOLO
2006

Abstract

In past years, seismic response of asymmetric structures has been frequently analysed by means of single-storey models, because of their simplicity and low computational cost. However, it is widely believed that use of more realistic multi-storey models is needed in order to investigate effects of some system characteristics (such as overstrength, higher modes of vibration, etc.) that make behaviour of multi-storey schemes different from that of single-storey systems. This paper examines effects of the overstrength in element cross-sections on the seismic behaviour of multi-storey asymmetric buildings. It is shown that in actual buildings this characteristic, which is sometimes very variable both in plan and along the height of the building, may lead to distributions of ductility demands different from those expected according to the results from single-storey models. Consequently, torsional provisions, which aim at reducing ductility demands of single-storey asymmetric systems to those of the corresponding torsionally balanced systems, should be re-checked in light of the behaviour of realistic multi-storey buildings.
Asymmetric buildings; Design criteria; Inelastic seismic response
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11769/8969
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 22
social impact