Glitazones (thiazolidinediones) are drugs used for diabetes mellitus type 2. By binding to peroxisome proliferator-activated receptor γ (PPARγ) they modulate transcription of genes of carbohydrate and lipid metabolism. Through PPARγ stimulation, however, glitazones also affect other genes, encompassing inflammation, cell growth and differentiation, angiogenesis, which broads their therapeutic potential. The gene expression profile induced by each glitazone shows peculiarities, which may affect its benefit/risk balance; indeed, troglitazone and rosiglitazone have been associated with liver failure and coronary disease, respectively; whether or not these severe adverse effects are solely related to PPARγ remains yet unclear, since glitazones exert also PPARγ-independent effects. Glitazone chemistry serves as scaffold for synthesizing new compounds with PPARγ-independent pharmacological properties and we report here a preliminary observation of inhibition of vasoconstriction by troglitazone in isolated vessels, an effect that appears fast, reversible, and PPARγ-independent. Pleiotropic effects of glitazones need specific attention in terms of drug safety, but also provide basis for drug development and novel experimental therapeutics.

Pleiotropic effects of glitazones: a double edge sword?

SALOMONE, Salvatore
2011-01-01

Abstract

Glitazones (thiazolidinediones) are drugs used for diabetes mellitus type 2. By binding to peroxisome proliferator-activated receptor γ (PPARγ) they modulate transcription of genes of carbohydrate and lipid metabolism. Through PPARγ stimulation, however, glitazones also affect other genes, encompassing inflammation, cell growth and differentiation, angiogenesis, which broads their therapeutic potential. The gene expression profile induced by each glitazone shows peculiarities, which may affect its benefit/risk balance; indeed, troglitazone and rosiglitazone have been associated with liver failure and coronary disease, respectively; whether or not these severe adverse effects are solely related to PPARγ remains yet unclear, since glitazones exert also PPARγ-independent effects. Glitazone chemistry serves as scaffold for synthesizing new compounds with PPARγ-independent pharmacological properties and we report here a preliminary observation of inhibition of vasoconstriction by troglitazone in isolated vessels, an effect that appears fast, reversible, and PPARγ-independent. Pleiotropic effects of glitazones need specific attention in terms of drug safety, but also provide basis for drug development and novel experimental therapeutics.
2011
Glitazones; Troglitazone; Vascular tone
File in questo prodotto:
File Dimensione Formato  
Pleiotropic effects of glitazones.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 898.04 kB
Formato Adobe PDF
898.04 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/9707
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 16
social impact