Abstract In this paper we describe some nonlinear equilibrium problems under uncertainty arising from economics and operations research. In particular we treat Wardrop equilibria in traffic networks. We show how the theory of monotone random variational inequalities, where random variables occur both in the operator and the constraint set, can be applied to model these problems. Therefore in this contribution we introduce the topic of random variational inequalities and present some of our recent results in this field. In particular, we treat the more structured case where a finite Karhunen-Loève expansion leads to a separation of the random and the deterministic variables. Here we describe a norm convergent approximation procedure based on averaging and truncation. We illustrate this procedure by means of some small sized numerical examples

Some equilibrium problems under uncertainty and random variational inequalities

RACITI, Fabio;
2012-01-01

Abstract

Abstract In this paper we describe some nonlinear equilibrium problems under uncertainty arising from economics and operations research. In particular we treat Wardrop equilibria in traffic networks. We show how the theory of monotone random variational inequalities, where random variables occur both in the operator and the constraint set, can be applied to model these problems. Therefore in this contribution we introduce the topic of random variational inequalities and present some of our recent results in this field. In particular, we treat the more structured case where a finite Karhunen-Loève expansion leads to a separation of the random and the deterministic variables. Here we describe a norm convergent approximation procedure based on averaging and truncation. We illustrate this procedure by means of some small sized numerical examples
File in questo prodotto:
File Dimensione Formato  
ANOR_2012.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 713.57 kB
Formato Adobe PDF
713.57 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/9900
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 22
social impact