Given a finite configuration of points A in R^k endowed with the Manhattan distance, we prove that the ratio of the sum of the distances from a centroid of A over the sum of the distances from the Steiner center of A is bounded by 1 + (k − 1) k. Furthermore, this bound can be attained. This fact extends to an arbitrary finite dimension k ≥ 2 a result proved by Fekete and Meijer for k = 2,3.

An extension to R^k of a result by Fekete and Meijer

GIARLOTTA, Alfio;URSINO, Pietro
2012-01-01

Abstract

Given a finite configuration of points A in R^k endowed with the Manhattan distance, we prove that the ratio of the sum of the distances from a centroid of A over the sum of the distances from the Steiner center of A is bounded by 1 + (k − 1) k. Furthermore, this bound can be attained. This fact extends to an arbitrary finite dimension k ≥ 2 a result proved by Fekete and Meijer for k = 2,3.
2012
Centroid; Steiner center; Manhattan distance
File in questo prodotto:
File Dimensione Formato  
FJMSpublished_giarlotta_ursino.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 74.61 kB
Formato Adobe PDF
74.61 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/13254
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact