In this work, we study the regularity criterion of the three-dimensional nematic liquid crystal flows. It is proved that if the vorticity satisfies ∫0 T∥ω(t,ṡ)∥ B.∞,∞-12/1+log(e+∥ω(t,ṡ) ∥B.∞,∞ -1)dt<∞, where B.∞,∞-1 denotes the critical Besov space, then the solution (u,d) becomes a regular solution on (0,T]. This result extends the recent regularity criterion obtained by Fan and Ozawa (2012).
Logarithmically improved regularity criterion for the nematic liquid crystal flows in $dot{B}^{-1}_{infty,infty}$
RAGUSA, Maria Alessandra
2013-01-01
Abstract
In this work, we study the regularity criterion of the three-dimensional nematic liquid crystal flows. It is proved that if the vorticity satisfies ∫0 T∥ω(t,ṡ)∥ B.∞,∞-12/1+log(e+∥ω(t,ṡ) ∥B.∞,∞ -1)dt<∞, where B.∞,∞-1 denotes the critical Besov space, then the solution (u,d) becomes a regular solution on (0,T]. This result extends the recent regularity criterion obtained by Fan and Ozawa (2012).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
logarithmic-regularity-NLCF.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
385.24 kB
Formato
Adobe PDF
|
385.24 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.