A cycle of length 5 with a chordal, i.e. an edge joining two non-adjacent vertices of the cycle, is called a graph H 5 or also an House-graph. In this paper, the spectrum of House- systems nesting C 3 -systems, C 4 -systems, C 5 -systems and together ( C 3 , C 4 , C 5 ) -systems, of all admissible indices are completely determined, without exceptions.

Nesting House-designs

BONACINI, PAOLA;GIONFRIDDO M;MARINO, LUCIA MARIA
2016-01-01

Abstract

A cycle of length 5 with a chordal, i.e. an edge joining two non-adjacent vertices of the cycle, is called a graph H 5 or also an House-graph. In this paper, the spectrum of House- systems nesting C 3 -systems, C 4 -systems, C 5 -systems and together ( C 3 , C 4 , C 5 ) -systems, of all admissible indices are completely determined, without exceptions.
Graphs, G-decomposizione, Nestings
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/17494
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 10
social impact