The objective was to study whether repetitive transcranial magnetic stimulation (rTMS) of the motor cortex could induce modification of peripheral blood lactate values. Nineteen young healthy volunteers were included; during the study, all subjectswere at rest, sitting on a comfortable armchair. The muscular activationwas evaluated by continuous electromyographic record. TMSwas performed by using a circular coil at the vertex. Resting motor threshold (rMT) was defined as the lowest TMS intensity able to induce motor responses of an amplitude >50 V in the relaxed contralateral target muscle in approximately 50% of 20 consecutive stimuli. Venous blood lactate values were measured before, immediately after and 10 min after a single session of low frequencies (1 Hz for 15 min) rTMS (LF rTMS) or high frequency (20 Hz for 15 min) rTMS (HF rTMS). As expected, LF rTMS induced a decrease of motor cortex excitability, whereas HF rTMS evoked an increase of motor cortex excitability. However, in the present investigation we observed that both conditions are associated to a significant increase of blood lactate. Since in our experimental conditions we can exclude a muscular production of lactate, the significant increment of peripheral blood lactate values, observed 10 min after the end of the rTMS session, is probably due to the crossing by brain-produced lactate of the blood–brain barrie

Changes of blood lactate levels after repetitive transcranial magnetic stimulation, Neuroscience Letters 450 (2009) 111–113.

MAUGERI, ANTONINO;Coco Marinella;
2009-01-01

Abstract

The objective was to study whether repetitive transcranial magnetic stimulation (rTMS) of the motor cortex could induce modification of peripheral blood lactate values. Nineteen young healthy volunteers were included; during the study, all subjectswere at rest, sitting on a comfortable armchair. The muscular activationwas evaluated by continuous electromyographic record. TMSwas performed by using a circular coil at the vertex. Resting motor threshold (rMT) was defined as the lowest TMS intensity able to induce motor responses of an amplitude >50 V in the relaxed contralateral target muscle in approximately 50% of 20 consecutive stimuli. Venous blood lactate values were measured before, immediately after and 10 min after a single session of low frequencies (1 Hz for 15 min) rTMS (LF rTMS) or high frequency (20 Hz for 15 min) rTMS (HF rTMS). As expected, LF rTMS induced a decrease of motor cortex excitability, whereas HF rTMS evoked an increase of motor cortex excitability. However, in the present investigation we observed that both conditions are associated to a significant increase of blood lactate. Since in our experimental conditions we can exclude a muscular production of lactate, the significant increment of peripheral blood lactate values, observed 10 min after the end of the rTMS session, is probably due to the crossing by brain-produced lactate of the blood–brain barrie
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/242353
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact