We prove regularity properties in the vector valued case for minimizers of variational integrals of the form$A(u) = integral(Omega)A(x, u, Du)dx$ where the integrand $A(x, u, Du)$ is not necessarily continuous respect to the variable x, grows polinomially like vertical bar xi vertical $ar(p), p >= 2$.

Regularity of minimizers of some variational integrals with discontinuity

RAGUSA, Maria Alessandra
;
2008-01-01

Abstract

We prove regularity properties in the vector valued case for minimizers of variational integrals of the form$A(u) = integral(Omega)A(x, u, Du)dx$ where the integrand $A(x, u, Du)$ is not necessarily continuous respect to the variable x, grows polinomially like vertical bar xi vertical $ar(p), p >= 2$.
2008
Variational problems; minimizers; partial regularity
File in questo prodotto:
File Dimensione Formato  
2152proof.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 156.11 kB
Formato Adobe PDF
156.11 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/26420
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 50
social impact